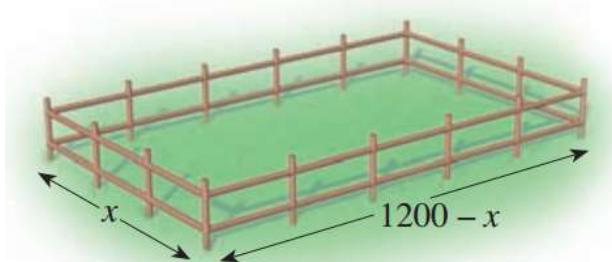


**3.1 Recitation Exercises**

1. The sum of the real coefficients  $a$ ,  $b$  and  $c$  of the quadratic function  $f(x) = ax^2 + bx + c$  that has **only one**  $x$ -intercept at  $-2$  and  $y$ -intercept at  $8$  is  
 A) 2      B) 16      C) 18      D) 8      E)  $-21$

2. If  $-3$  is a zero of the quadratic function  $f(x) = ax^2 + bx + c$  and its graph has lowest point  $(-2, -2)$ . What is the other zero of this quadratic function?

3. If a ball is thrown up in the air and its height  $H$ , in meters, is a function of time  $t$ , in seconds, given by  $H(t) = -16t^2 + 128t + 105$ , then the time it will take the ball to reach its maximum height is  
 A) 4 seconds      B) 8 seconds      C) 2 seconds      D) 1 second      E) 16 seconds

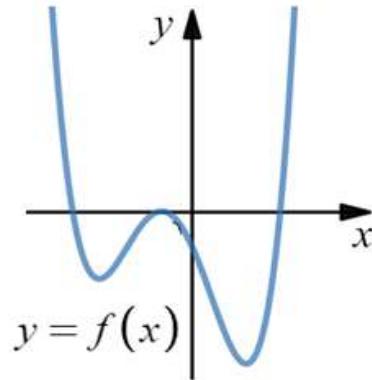

4. If  $x = -3$  is the axis of symmetry of the parabola  $f(x) = -2x^2 - 4dx - d^2 - 7$  for some constant  $d$ , then the maximum value of  $f(x)$  is equal to  
 A) 3      B) 1      C)  $-3$       D) no maximum value      E) 2

5. If  $u$  and  $v$  are two integers such that  $v - 2u = 8$  and the product  $uv$  is minimum, then find  $u + v$ .

6. Carol has 2400 ft of fencing to fence in a rectangular horse corral.

(a) Find a function that models the area of the corral in terms of the width  $x$  of the corral.

(b) Find the dimensions of the rectangle that maximize the area of the corral.



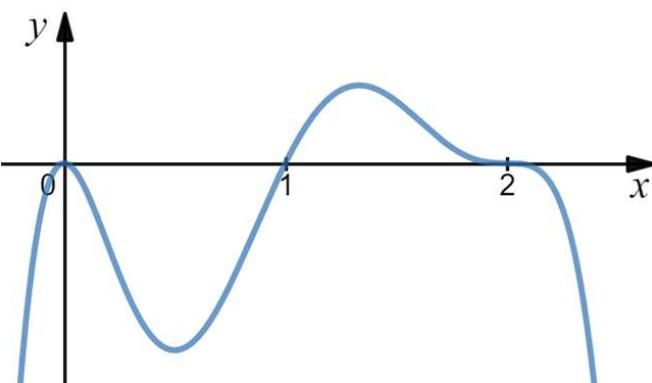

the

## 3.2 Recitation Exercises

1. If  $f(x) = a(x + 4)(x^2 + 2x + 1)(3 - x)$  has the graph below then a reasonable possible value of the leading coefficient  $a$  that will justify the end behavior (far left and far right behavior) of the graph is

- A)  $-1$
- B)  $2$
- C)  $0$
- D)  $1$
- E)  $\frac{1}{2}$




2. Sketch the graph of the following polynomials

a)  $P(x) = x^4 - x^3 - 2x^2$ .

b)  $Q(x) = |x^4 - x^3 - 2x^2|$ .

3. Which one of the following polynomials has the graph given below?

- i.  $y = 2x^2(x - 1)(x - 2)$
- ii.  $y = -2x^2(x - 1)(x - 2)$
- iii.  $y = -2x^2(x - 1)^3(x - 2)$
- iv.  $y = -2x^2(x - 1)(x - 2)$
- v.  $y = -2x(x - 1)^3(x - 2)$



4. Graph the polynomial  $p(x) = x^3(x + 2)(x - 3)^2$  and find the interval(s) on which the function is below  $x$ -axis.

**3.3 Recitation Exercises**

---

**1.** When  $x^3 - 3x^2 - x - 1$  is divided by  $x - k$ , and the remainder is  $-4$ , then the sum of all values of  $k$  is

A) 3      B) 1      C) -1      D) 0      E) 2

**2.** If  $P(x) = x^{105} - x^{10} - 2x + 1$  is divided by  $x + 1$ , then the remainder is

A) 2      B) 1      C) -1      D) 0      E) -2

**3.** If  $x + 2$  is a factor of the polynomial  $P(x) = x^3 - kx^2 + 3x + 7k$ , then  $k =$

A)  $\frac{10}{3}$       B)  $\frac{13}{3}$       C)  $\frac{11}{3}$       D)  $\frac{16}{3}$       E)  $\frac{14}{3}$

**4.** If  $P(x) = -x^3 + kx^2 - 5x - 20$  is divided by  $x + 2$ , then the set of all values of  $k$  which makes the remainder positive is

A)  $\left(\frac{9}{2}, \infty\right)$       B)  $\left(\frac{19}{2}, \infty\right)$       C)  $\left(\frac{11}{2}, \infty\right)$       D)  $\left(\frac{1}{2}, \infty\right)$       E)  $\emptyset$

**5.** If  $\frac{2x^5+x^3-2x^2+3x-5}{x^2-3x+1} = Q(x) + \frac{R(x)}{x^2-3x+1}$ , then what are  $Q(x)$  and  $R(x)$ ?

---

### 3.4 Recitation Exercises

---

1. According to Descartes rule of signs, which one of the following is **FALSE** about the zeros of the polynomial  $P(x) = x^5 - x^4 + 2x^2 - x - 1$  ?  $P(x)$  has
  - three negative zeros and two non-real complex zeros.
  - three positive zeros and two negative zeros.
  - three positive zeros and two non-real complex zeros.
  - one positive zero, two negative zeros, and two non-real complex zeros.
  - one positive zero and four non-real complex zeros.
2. Find all rational zeros of  $P(x) = x^3 - 7x^2 + 16x - 12$  and write it in factored form.
3. The sum of all real zeros of the polynomial  $P(x) = 2x^4 + 15x^3 + 17x^2 + 3x - 1$  is
  - $-3 + \sqrt{10}$
  - $-\frac{3}{2}$
  - $-\frac{15}{2}$
  - $-3 - \sqrt{10}$
  - $-7$
4. The total number of the  $x$ -intercept(s) of the graph of the polynomial  $P(x) = x^5 + 6x^4 + 13x^3 + 14x^2 + 12x + 8$  is
  - 0
  - 1
  - 2
  - 3
  - 4
5. Sketch the graph of the polynomial  $P(x) = 2x^3 - 7x^2 + 2x + 3$ .
6. List all **possible rational zeros** given by the Rational Zeros Theorem, for the polynomial  $P(x) = 12x^5 + 6x^3 - 2x - 8$ .

**3.5 Recitation Exercises**

---

1. If  $-i$  is a zero of the polynomial  $P(x) = x^4 - 4x^3 + 5x^2 - 4x + 4$ , then the number of the  $x$ -intercept(s) of the graph of  $P$  is

A) 0      B) 1      C) 2      D) 3      E) 4

2. If  $1 + i$  is a zero of  $P(x) = x^3 - x^2 - ix^2 - 16x + 16 + 16i$ , then find the **sum of all zeros** of  $P(x)$

A) 0      B)  $1 + i$       C)  $1 - i$       D) 4      E)  $-4$

3. Find all the zeros of the polynomial  $P(x) = x^5 + x^3 + 8x^2 + 8$ .

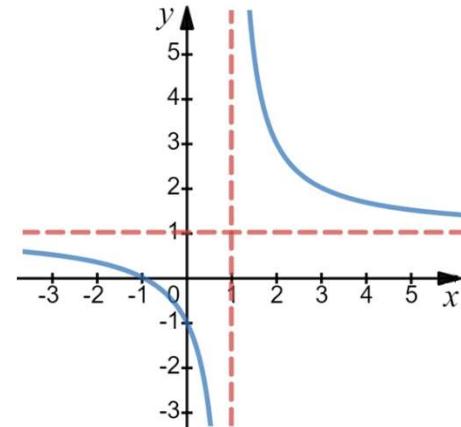
4. Find the polynomial of least degree for which  $1 + i$  and  $-1 - i$  are zeros and the  $y$ -intercept is  $-2$  where the polynomial has:

a) Real coefficients.  
b) Complex coefficients.

**3.6 Recitation Exercises**

---

1. If  $y = \frac{2}{3}$  is the horizontal asymptote of the function  $y = \frac{ax-}{3x-4}$ , then the  $x$ -intercept of the graph is


A)  $\frac{4}{3}$       B)  $\frac{5}{2}$       C)  $\frac{5}{4}$       D)  $\frac{3}{2}$       E)  $-\frac{1}{2}$

2. The graph of  $y = \frac{x^2+3x-2}{2x^2+x+10}$  intersects its horizontal asymptote when  $x$  equals

A)  $\frac{14}{3}$       B)  $-\frac{1}{2}$       C)  $\frac{11}{5}$       D)  $-\frac{2}{3}$       E)  $\frac{14}{5}$

3. The following figure represents the graph of

A)  $y = \frac{x}{x-1}$   
 B)  $y = \frac{x+1}{x-1}$   
 C)  $y = \frac{x-1}{x+1}$   
 D)  $y = \frac{2(x+1)}{x-1}$   
 E)  $y = \frac{x+2}{x-1}$



4. The graph of  $y = \frac{6-ax}{5-(a-2)x}$  has vertical asymptote  $x = 5$ , then it has a horizontal asymptote given by

A)  $y = \frac{1}{3}$       B)  $y = \frac{3}{2}$       C)  $y = 5$       D)  $y = \frac{6}{5}$       E)  $y = 3$

5. Find all the asymptotes and holes, if any, for the graph of  $f(x) = \frac{x^4-4x^2}{x^3-2x^2-4x+8}$ .