# **6.2 Recitation Exercises**

**1.** Find the exact value of the following:

a) 
$$\cos\left(\frac{-7\pi}{6}\right)$$
  
b)  $\sin\left(\frac{-7\pi}{4}\right)$   
c)  $\cot\left(\frac{-5\pi}{6}\right)$   
d)  $\sec\left(\frac{11\pi}{6}\right)$ 

- **2.** If cos 5 = a and sin 5 = b, then a b = b
  - **A)** a positive real number.
  - **B)** a negative real number.
  - C) zero.
  - D) undefined.
- **3.** Write the first expression in terms of the second
  - **a)**  $\tan x$ ,  $\sin x$  where *x* is in Quadrant *IV*
  - **b**) tan *x*, sec *x* where *x* is in Quadrant *III*
- **4.** Determine whether the function  $f(x) = \cos(-2\sin^2 x^3)$  is even, odd, or neither.

## **6.3 Recitation Exercises**

- **1.** Graph the following functions:
  - a)  $f(x) = |\sin x|$ , where  $-2\pi \le x \le 2\pi$ b)  $f(x) = -6 \cos\left(-\frac{\pi}{4}x - \frac{\pi}{2}\right)$ , where  $-4 \le x \le 4$
- 2. If the graph of the function  $f(x) = a \cos(c + bx)$  has a period of  $\frac{2\pi}{3}$ , a horizontal shift of  $\frac{\pi}{4}$  to the left and f(0) = 1, then a =A) 1 B) -1 C)  $\sqrt{2}$  D)  $-\sqrt{2}$  E) 2
- **3.** If *M* is the maximum value and m is the minimum value of the function  $f(x) = -3 |\sin(2\pi x 1)| + 5$ , then M + m =
  - A) 10 B) 13 C) 0 D) 3 E) 7
- **4.** Which one of the following is the graph of  $y = \frac{1}{4}\cos 2\left(x + \frac{\pi}{4}\right)$  over one period?



# **6.4 Recitation Exercises**

- **1.** Find **the interval(s) in which** the graph of the function  $f(x) = -\csc\left(\frac{\pi x}{2}\right)$ , where -2 < x < 2, is increasing.
- **2.** If a < 0, b > 0 are two vertical asymptotes of the graph of the function  $f(x) = 2 \sec\left(2x + \frac{\pi}{2}\right)$  over the interval $(-\pi, \pi)$ , then find the value of *ab*.
- **3.** The number of intersection point(s) of the graphs of y = tan|x| and y = 1 in the interval  $\left(\frac{-3\pi}{2}, \frac{3\pi}{2}\right)$  is **A)** 2 **B)** 3 **C)** 4 **D)** 5 **E)** 6
- 4. The graph below can be represented by the trigonometric function
  - A)  $f(x) = -2 \tan\left(\frac{\pi}{4}x + \frac{\pi}{4}\right)$ B)  $f(x) = 2 \cot\left(\frac{\pi}{4}x + 1\right)$ C)  $f(x) = 2 \cot(x + 1)$ D)  $f(x) = 2 \tan\left(\frac{\pi}{4}x + \frac{\pi}{4}\right)$ E)  $f(x) = -2 \tan(x + 1)$

**5.** If the adjacent figure is the graph of the function  $f(x) = a \csc(bx + c) + d$ , then the value of  $\frac{abcd}{\pi}$  is equal to

- ,
- **B)** 2
- **C)** 1/2
- **D)** -1/2
- **E)** -2



# **6.5 Recitation Exercises**

- **1.** Find the exact value of each expression:
  - a)  $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ b)  $\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$ c)  $\tan^{-1}(-1)$
- **2.** Find the exact value of
  - a)  $\cos^{-1}(\cos\frac{3\pi}{5})$  b)  $\sin^{-1}(\cos\frac{5\pi}{4})$  c)  $\tan^{-1}(\tan\frac{4\pi}{3})$ d)  $\sin^{-1}\left[\sin\frac{3\pi}{5}\right]$ . e)  $\cos\left(\cos^{-1}\frac{\pi}{2}\right)$
- **3.** If the range of  $y = -\cos^{-1}(2 7x) + k$  is  $[\pi, 2\pi]$ , then the value of k is equal to
  - A)  $\pi$  B)  $-\pi$  C)  $2\pi$  D) 2 E) -2
- **4.** The domain of  $y = 2 \sin^{-1} \frac{x}{3}$  is **A)** [-1,1] **B)** [-2,2] **C)** [-3,3] **D)** [-6,6] **E)**  $\left[-\frac{1}{3}, \frac{1}{3}\right]$