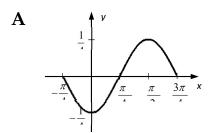
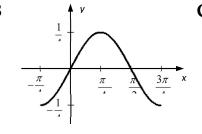
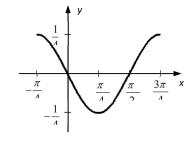
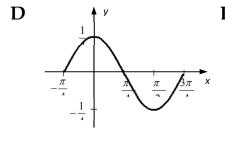
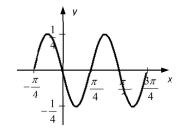
KFUPM - PREP MATH PROGRAM - MATH002 - TERM 241


6.2 Recitation Exercises


- **1.** Find the exact value of the following:
 - a) $\cos\left(\frac{-7\pi}{6}\right)$
 - **b)** $\sin\left(\frac{-7\pi}{4}\right)$
 - c) $\cot\left(\frac{-5\pi}{6}\right)$
 - d) $\sec\left(\frac{11\pi}{6}\right)$
- **2.** If $\cos 5 = a$ and $\sin 5 = b$, then a b =
 - **A)** a positive real number.
 - **B)** a negative real number.
 - C) zero.
 - D) undefined.
- **3.** Write the first expression in terms of the second
 - a) $\tan x$, $\sin x$ where x is in Quadrant IV
 - **b)** $\tan x$, $\sec x$ where x is in Quadrant III
- **4.** Determine whether the function $f(x) = \cos(-2\sin^2 x^3)$ is even, odd, or neither.


6.3 Recitation Exercises

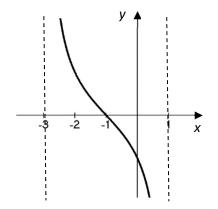

- **1.** Graph the following functions:
 - a) $f(x) = |\sin x|$, where $-2\pi \le x \le 2\pi$
 - **b)** $f(x) = -6 \cos(-\frac{\pi}{4}x \frac{\pi}{2})$, where $-4 \le x \le 4$
- **2.** If the graph of the function $f(x) = a \cos(c + bx)$ has a period of $\frac{2\pi}{3}$, a horizontal shift of $\frac{\pi}{4}$ to the left and f(0) = 1, then a =
 - **A)** 1


- B) -1 C) $\sqrt{2}$ D) $-\sqrt{2}$
 - **E)** 2
- **3.** If *M* is the maximum value and m is the minimum value of the function $f(x) = -3 |\sin(2\pi x - 1)| + 5$, then M + m =
 - **A)** 10
- B) 13
- C) 0
- **D)** 3
- E) 7
- **4.** Which one of the following is the graph of $y = \frac{1}{4}\cos 2\left(x + \frac{\pi}{4}\right)$ over one period?

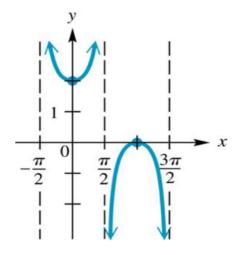
KFUPM - PREP MATH PROGRAM - MATH002 - TERM 241

6.4 Recitation Exercises

- **1.** Find **the interval(s) in which** the graph of the function $f(x) = -\csc(\frac{\pi x}{2})$, where -2 < x < 2, is increasing.
- **2.** If a < 0, b > 0 are two vertical asymptotes of the graph of the function $f(x) = 2 \sec\left(2x + \frac{\pi}{2}\right)$ over the interval $(-\pi, \pi)$, then find the value of ab.
- **3.** The number of intersection point(s) of the graphs of y = tan|x| and y = 1 in the interval $\left(\frac{-3\pi}{2}, \frac{3\pi}{2}\right)$ is
 - **A)** 2
- **B)** 3
- **C)** 4
- **D**) 5
- **E)** 6
- **4.** The graph below can be represented by the trigonometric function


A)
$$f(x) = -2 \tan\left(\frac{\pi}{4}x + \frac{\pi}{4}\right)$$

$$B) \quad f(x) = 2 \cot\left(\frac{\pi}{4}x + 1\right)$$


C)
$$f(x) = 2 \cot(x+1)$$

$$D) \quad f(x) = 2 \tan\left(\frac{\pi}{4}x + \frac{\pi}{4}\right)$$

E)
$$f(x) = -2 \tan(x+1)$$

- **5.** If the adjacent figure is the graph of the function $f(x) = a \csc(bx + c) + d$, then the value of $\frac{abcd}{\pi}$ is equal to
 - **A)** 1
 - **B)** 2
 - **C)** 1/2
 - **D)** -1/2
 - **E)** -2

6.5 Recitation Exercises

- **1.** Find the exact value of each expression:
 - a) $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
 - b) $\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$
 - c) $tan^{-1}(-1)$
- **2.** Find the exact value of
- a) $\cos^{-1}(\cos\frac{3\pi}{5})$ b) $\sin^{-1}(\cos\frac{5\pi}{4})$ c) $\tan^{-1}(\tan\frac{4\pi}{3})$
- d) $\sin^{-1} \left[\sin \frac{3\pi}{5} \right]$. e) $\cos \left(\cos^{-1} \frac{\pi}{2} \right)$
- 3. If the range of $y = -\cos^{-1}(2-7x) + k$ is $[\pi, 2\pi]$, then the value of k is equal to
- A) π B) $-\pi$ C) 2π D) 2
- **E)** -2

- **4.** The domain of $y = 2 \sin^{-1} \frac{x}{3}$ is

- A) [-1,1] B) [-2,2] C) [-3,3] D) [-6,6] E) $[-\frac{1}{3},\frac{1}{3}]$