KFUPM - PREP MATH PROGRAM - MATH002 - TERM 241

2.8 Recitation Exercises

- **1.** If the graph of f(x) = |x + 1| 2, $x \le k$, is one-one, then a possible value of k is equal to
 - **A)** 0
- **B)** 1
- **C)** -1
- **D)** 2
- **E)** 3
- **2.** For the following functions, find $f^{-1}(x)$ and state its domain and range
 - a) $f(x) = -\sqrt{4 x^2}$ for $-2 \le x \le 0$.
 - b) $f(x) = 2 + \sqrt{3 + x}$ for $x \ge -3$
 - c) $f(x) = \frac{2x+3}{x-1}$
- 3. If $f(x) = -x^2 + 4x$, $x \le 2$, then $f^{-1}(x)$ is
 - **A)** $y = 2 \pm \sqrt{4 x}$, $x \le 4$
 - **B)** $y = 2 \sqrt{x 4}, x \ge 4$
 - C) $y = 2 \sqrt{4 x}$, $x \le 4$
 - **D)** $y = 2 + \sqrt{4 x}, x \le 4$
 - E) $y = 2 + \sqrt{x-4}, x \ge 4$
- **4.** Let $f(x) = \frac{3x-k}{x-2}$ and $f^{-1}(x)$ exists. If $f^{-1}(-2) = 1$, then the value of k is
 - **A)** −1
- **B)** 1
- **C)** 0
- **D)** -2
- **E)** 2

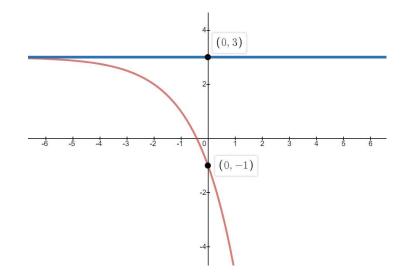
4.1 & 4.2 Recitation Exercises

- **1.** If the function $y = 4^{x+2} 5$ is written as $y = k \left(\frac{1}{2}\right)^{bx} + c$, then k + b + c =
 - **A)** 11
- **B)** 7
- **C**) 9
- **D)** 13
- **E)** 12
- **2.** Find the intersection points of the graphs of $y = \left(\frac{1}{3}\right)^{2x+5}$ and y = 27
- **3.** Graph the function. State the domain, range, and asymptote:

a)
$$y = 3 - 10^{-x}$$

b)
$$f(x) = e^{-|x|} - 1$$

4. The adjacent figure represents the graph of:


(a)
$$y = -\left(\frac{1}{2}\right)^{x+2} + 3$$

(b)
$$y = \left(\frac{1}{2}\right)^{x+2} - 3$$

(c)
$$y = -(2)^{x+2} + 3$$

(d)
$$y = (2)^x + 3$$

(e)
$$y = (2)^{x-2} + 3$$

KFUPM - PREP MATH PROGRAM - MATH002 - TERM 241

4.3 Recitation Exercises

- **1.** Use the definition of the logarithmic function to find *x* in the following equations:
 - a) $\log_x 25 = 2$
 - **b)** $\log_7 \frac{1}{49} = 3x$
- **2.** Find the domain of the following functions:
 - a) $f(x) = \ln x + \ln(2 x)$.
 - **b)** $f(x) = \log_3\left(\frac{x-1}{2-x}\right)$.
 - c) $f(x) = \log|x^2 x|.$
- **3.** Graph the function. State the domain, range, and asymptote:
 - a) $y = 1 \log(1 x)$
 - $b) y = |\ln x|$
- **4.** The graph of $y = \log_3 |x 3| 1$ is below the *x*-axis on the intervals
 - **A)** $(2, 3) \cup (3, 4)$.
 - **B)** $(-\infty, 0) \cup (6, \infty)$.
 - C) $(-1, 0) \cup (0, 1)$.
 - **D)** $(0, 3) \cup (3, 6)$.
 - E) $(-\infty, 2) \cup (3, \infty)$.

4.4 Recitation Exercises

- **1.** If $\log_{10} 2 = 0.30$, $\log_{10} 3 = 0.48$, then $\log_{10} \left(\frac{9}{25}\right) =$
 - **A)** -0.24
- **B)** -0.44 **C)** 0.36
- **D)** -0.32
- E) -0.28

- **2.** If $\log 2 = c$, then $\log_8 \sqrt[3]{10} =$

 - A) $\frac{1}{9c}$ B) $\frac{2}{3c}$ C) $\frac{c}{9}$ D) $\frac{1}{c}$ E) $\frac{3c}{2}$

- **3.** If $M = -\log_{\frac{1}{2}} \sqrt[4]{2}$ and $N = \left[\frac{1}{25}\right]^{-2 \log_5 2}$, then $N^M =$
 - **A)** 2

- B) -2 C) $\frac{1}{2}$ D) $-\frac{1}{2}$
- **E)** 4
- **4.** Use the Laws of Logarithms to combine the following expression

$$3\log_2 x - \frac{1}{3}\log_4 x^{12} + \frac{1}{2}\log_{\frac{1}{2}} x^6$$
, where $x > 0$

5. If a > 0, $a \ne 1$, x > 0, $x \ne 1$, then simplify the expression

$$(\log_{\sqrt{10}} 1000)(\log_a \sqrt{x})(\log_{x^3} a)$$

4.5 Recitation Exercises

1. Solve the following equations:

a)
$$4^x + 2^{1+2x} = 50$$

b)
$$e^x + 15e^{-x} - 8 = 0$$

c)
$$\log_2(\log_3 x) = 4$$

- **2.** The sum of all solutions to the equation $\log_2 \sqrt{x} = -\sqrt{\log_2 x}$ is
 - **A)** 16
- **B)** 17
- **C)** 1
- **D)** 24
- **E)** 12
- **3.** Find the intersection point(s) between the following functions

$$f(x) = \log_4 8 - \log_4(x+1)$$
 and $g(x) = \log_{16}(x+1)$

4. Find the inverse of the following functions

a)
$$f(x) = 3^{x+1}$$

b)
$$f(x) = \log_2(x - 1)$$