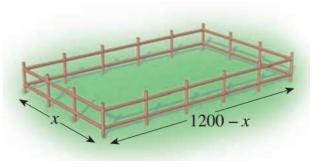
KFUPM – PREP MATH PROGRAM – MATH001 – TERM 241

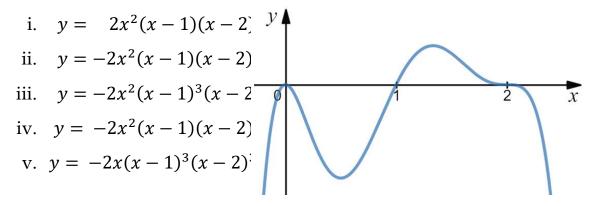
3.1 Recitation Exercises

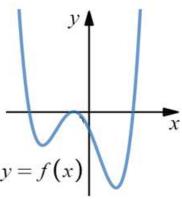

- 1. The sum of the real coefficients *a*, *b* and *c* of the quadratic function
 f(x) = ax² + bx + c that has only one *x*-intercept at -2 and *y*-intercept at 8 is
 A) 2
 B) 16
 C) 18
 D) 8
 E) -21
- **2.** If -3 is a zero of the quadratic function $f(x) = ax^2 + bx + c$ and its graph has lowest point (-2, -2). What is the other zero of this quadratic function?
- **3.** If a ball is thrown up in the air and its height H, in meters, is a function of time t, in seconds, given by $H(t) = -16t^2 + 128t + 105$, then the time it will take the ball to reach its maximum height is

A) 4 seconds B) 8 seconds C) 2 seconds D) 1 second E) 16 seconds

- 4. If x = -3 is the axis of symmetry of the parabola f(x) = -2x² 4dx d² 7 for some constant *d*, then the maximum value of f(x) is equal to
 A) 3 B) 1 C) -3 D) no maximum value E) 2
- **5.** If *u* and *v* are two integers such that v 2u = 8 and the product uv is minimum, then find u + v.
- **6.** Carol has 2400 ft of fencing to fence in a rectangular horse corral.

(a) Find a function that models the area of the corral in terms of the width *x* of the corral.


(b) Find the dimensions of the rectangle that maximize the area of corral.


the

3.2 Recitation Exercises

- **1.** If $f(x) = a(x + 4)(x^2 + 2x + 1)(3 x)$ has the graph below then a reasonable possible value of the leading coefficient *a* that will justify the end behavior (far left and far right behavior) of the graph is
 - **A)** −1
 - **B)** 2
 - **C)** 0
 - **D)** 1
 - **E)** $\frac{1}{2}$
- 2. Sketch the graph of the following polynomials
 - a) $P(x) = x^4 x^3 2x^2$.
 - **b)** $Q(x) = |x^4 x^3 2x^2|.$
- **3.** Which one of the following polynomials has the graph given below?

4. Graph the polynomial $p(x) = x^3(x + 2)(x - 3)^2$ and find the interval(s) on which the function is below *x*-axis.

3.3 Recitation Exercises

- **1.** When $x^3 3x^2 x 1$ is divided by x k, and the remainder is -4, then the sum of all values of *k* is
 - A) 3 B) 1 C) -1 D) 0 E) 2
- **2.** If $P(x) = x^{105} x^{10} 2x + 1$ is divided by x + 1, then the remainder is
 - A) 2 B) 1 C) -1 D) 0 E) -2
- **3.** If x + 2 is a factor of the polynomial $P(x) = x^3 kx^2 + 3x + 7k$, then $k = x^3 kx^2 + 3x + 7k$.
 - A) $\frac{10}{3}$ B) $\frac{13}{3}$ C) $\frac{11}{3}$ D) $\frac{16}{3}$ E) $\frac{14}{3}$
- **4.** If $P(x) = -x^3 + kx^2 5x 20$ is divided by x + 2, then the set of all values of k which makes the remainder positive is
 - A) $\left(\frac{9}{2},\infty\right)$ B) $\left(\frac{19}{2},\infty\right)$ C) $\left(\frac{11}{2},\infty\right)$ D) $\left(\frac{1}{2},\infty\right)$ E) \emptyset

5. If
$$\frac{2x^5 + x^3 - 2x^2 + 3x - 5}{x^2 - 3x + 1} = Q(x) + \frac{R(x)}{x^2 - 3x + 1}$$
, then what are $Q(x)$ and $R(x)$?

KFUPM – PREP MATH PROGRAM – MATH001 – TERM 241

3.4 Recitation Exercises

- **1.** According to Descartes rule of signs, which one of the following is **FALSE** about the zeros of the polynomial $P(x) = x^5 x^4 + 2x^2 x 1$? P(x) has
 - A) three negative zeros and two non-real complex zeros.
 - B) three positive zeros and two negative zeros.
 - C) three positive zeros and two non-real complex zeros.
 - D) one positive zero, two negative zeros, and two non-real complex zeros.
 - E) one positive zero and four non-real complex zeros.
- **2.** Find all rational zeros of $P(x) = x^3 7x^2 + 16x 12$ and write it in factored form.
- **3.** The sum of all real zeros of the polynomial $P(x) = 2x^4 + 15x^3 + 17x^2 + 3x 1$ is

A) $-3 + \sqrt{10}$ B) $-\frac{3}{2}$ C) $-\frac{15}{2}$ D) $-3 - \sqrt{10}$ E) -7

- **4.** The total number of the *x*-intercept(s) of the graph of the polynomial $P(x) = x^5 + 6x^4 + 13x^3 + 14x^2 + 12x + 8$ is
 - A) 0
 B) 1
 C) 2
 D) 3
 E) 4
- **5.** Sketch the graph of the polynomial $P(x) = 2x^3 7x^2 + 2x + 3$.
- **6.** List all **possible rational zeros** given by the Rational Zeros Theorem, for the polynomial $P(x) = 12x^5 + 6x^3 2x 8$.

3.5 Recitation Exercises

1. If -i is a zero of the polynomial $P(x) = x^4 - 4x^3 + 5x^2 - 4x + 4$, then the number of the *x*-intercept(s) of the graph of *P* is

A) 0 B) 1 C) 2 D) 3 E) 4

2. If 1 + i is a zero of $P(x) = x^3 - x^2 - ix^2 - 16x + 16 + 16i$, then find the **sum of** all zeros of P(x)

A) 0 B) 1 + i C) 1 - i D) 4 E) -4

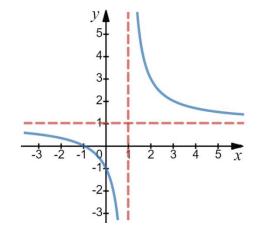
- **3.** Find all the zeros of the polynomial $P(x) = x^5 + x^3 + 8x^2 + 8$.
- **4.** Find the polynomial of least degree for which 1 + i and -1 i are zeros and the *y*-intercept is -2 where the polynomial has:
 - a) Real coefficients.
 - **b)** Complex coefficients.

KFUPM – PREP MATH PROGRAM – MATH001 – TERM 241

3.6 Recitation Exercises

1. If $y = \frac{2}{3}$ is the horizontal asymptote of the function $y = \frac{ax-5}{3x-4}$, then the *x*-intercept of the graph is

A)
$$\frac{4}{3}$$
 B) $\frac{5}{2}$ C) $\frac{5}{4}$ D) $\frac{3}{2}$ E) $-\frac{1}{2}$


2. The graph of $y = \frac{x^2 + 3x - 2}{2x^2 + x + 10}$ intersects its horizontal asymptote when *x* equals

A) $\frac{14}{3}$ B) $-\frac{1}{2}$ C) $\frac{11}{5}$ D) $-\frac{2}{3}$ E) $\frac{14}{5}$

- 3. The following figure represents the graph of
 - A) $y = \frac{x}{x-1}$ B) $y = \frac{x+1}{x-1}$

C)
$$y = \frac{x-1}{x+1}$$

D) $y = \frac{2(x+1)}{x-1}$ E) $y = \frac{x+2}{x-1}$

4. The graph of $y = \frac{6-ax}{5-(a-2)x}$ has vertical asymptote x = 5, then it has a horizontal asymptote given by

A)
$$y = \frac{1}{3}$$
 B) $y = \frac{3}{2}$ C) $y = 5$ D) $y = \frac{6}{5}$ E) $y = 3$

5. Find all the asymptotes and holes, if any, for the graph of $f(x) = \frac{x^4 - 4x^2}{x^3 - 2x^2 - 4x + 8}$.