KFUPM – PREP MATH PROGRAM – MATH002 – TERM 251

5.1 Recitation Exercises

1. Find the least positive angle that is coterminal with the given angles.

a) -800°

c) 1270°

b) $\frac{51\pi}{2}$

d) 10

- **2.** If the arc length $\frac{4\pi}{3}$ cm subtends a central angle, θ in a circle with diameter 12 *cm*, find the degree measure of the angle θ .
- **3.** Each tire of a car has a radius of 40 cm. If the tires are rotating at 500 revolutions per minute, find the speed of the car in kilometers per hour.
- **4.** Two pulleys in the figure have radii of 15cm and 8 cm respectively. If the larger pulley rotates 50 times in a minute, then the angular speed of the radians per smaller pulley in second

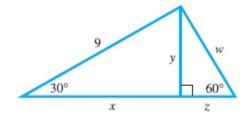
A) $\frac{75\pi}{4}$ B) $\frac{25\pi}{8}$ C) $\frac{75\pi}{8}$ D) $\frac{25}{4}$ E) $\frac{375\pi}{2}$

5. A hard disk in a computer rotates at 300 revolutions per minute. Through how many degrees does a point on the edge of the disk move in 3 seconds?

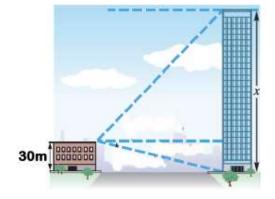
A) 7200°

B) 6400°

C) 10800°


D) 5400°

E) 1800°


KFUPM – PREP MATH PROGRAM – MATH002 – TERM 251

5.2 Recitation Exercises

- **1.** Find the value of $\left(\sin\frac{\pi}{3}\cos\frac{\pi}{4} \sin\frac{\pi}{4}\cos\frac{\pi}{3}\right)^2$.
- 2. Find the exact value of each labeled part with a variable in the following figure

- 3. The angle of elevation from the top of a small building to the top of a taller building is 60° , while the angle of depression to the bottom is 30° . If the shorter building is 30 m high, then the height of the taller building is
 - $(30 + 60\sqrt{3}) m$ A)
 - B) 150 m
 - $100\sqrt{3} m$ C)
 - 120 mD)
 - $90\sqrt{3} m$ E)

- **1.** From a point on the ground 100 ft from the base of a building, an observer finds that the angle of elevation to the top of the building is 60° and that the angle of elevation to the top of a flagpole on top of the building is α , with $\sin \alpha = \frac{4}{\sqrt{19}}$. Then the Length of the flagpole is
 - **A)** $\frac{100}{3} \sqrt{3}$ feet **B)** 300 feet **C)** 100 feet **D)** 3 feet **E)** $\sqrt{3}$ feet

5.3 Recitation Exercises

- **1.** Find the reference angle for the given angle
 - 800° a)
 - **b)** -105°

 - d) 20
- **2.** Suppose that the terminal side of the angle θ in the standard position is the line 3x + 2y = 0, $x \le 0$, then find $\csc \theta$.
- **3.** Let θ be an angle in the third quadrant and satisfying:

 $2 \sec \theta = 3 \csc \theta$, then find $\csc \theta + \sec \theta$.

- **4.** If $\cot^2 \theta = 16$ and θ terminates in the third quadrant, then $\sec \theta =$
 - **A)** $\sqrt{17}$

- B) $\frac{\sqrt{17}}{4}$ C) $-\frac{\sqrt{17}}{4}$ D) $-\frac{4}{\sqrt{17}}$
- E) $-\sqrt{17}$