## KFUPM - PREP MATH PROGRAM - MATH002 - TERM 251

## 12.1 Recitation Exercises

1. Which one of the following is the equation in standard form of the parabola with directrix y = 7 and focus (1,3)

**A)** 
$$y - 5 = -\frac{1}{8}(x - 1)^2$$

**B)** 
$$x-5=-\frac{1}{8}(x-1)^2$$

C) 
$$y - 5 = \frac{1}{8}(x - 1)^2$$

**D)** 
$$x - 1 = \frac{1}{8}(y - 4)^2$$

E) 
$$y-5=\frac{1}{4}(x-1)^2$$

**2.** Find an equation of the parabola from the given graph



**3.** Find the vertex, focus, and directrix of the parabola given by the equation:

$$3x^2 - 12x - y + 14 = 0$$

- 4. Which of the following points lies on the parabola that has vertex (2,1) and focus (2,3)
  - A) (4,2)

- B) (6,3) C) (5,3) D) (1,-3) E) (-1,3)

## 12.2 & 12.3 Recitation Exercises

**1.** Find the center, the vertices, foci, and eccentricity of the ellipse given by the equation

a) 
$$3x^2 + 2y^2 - 6x + 12y = -15$$

**b)** 
$$3y^2 + 2x^2 - 6y + 12x = -15$$

2.

- **a)** Find the equation of the ellipse that has vertices at (3,8) and (3, -2), and foci at (3,6) and (3,0).
- **b)** Find the equation in standard form, of the ellipse with foci at (-1,2) and (3,2) that passes through the point (3,5).
- **3.** Find the points of intersection of the ellipse  $\frac{(x+1)^2}{16} + \frac{(y-2)^2}{9} = 1$ , and the hyperbola  $\frac{(x+1)^2}{16} \frac{(y-2)^2}{9} = 1$ :
  - **a)** By solving the system of nonlinear equations.
  - **b)** By graphing.
- **4.** Find the equation in standard form of the hyperbola with vertices (-1,0) and (-1,-4), and eccentricity  $e = \frac{\sqrt{5}}{2}$ .
- **5.** Write the following equations in standard form and identify the corresponding conics

a) 
$$x^2 - 4x + y^2 + 2y + 2 = 0$$
.

**b)** 
$$2x^2 - 8x - 2y^2 - 4y = 0.$$

c) 
$$27x^2 + 36y^2 + 18x + 36y - 96 = 0$$
.