KFUPM - PREP MATH PROGRAM - MATH001 - TERM 251

3.1 Recitation Exercises

- **1.** The sum of the real coefficients a, b and c of the quadratic function $f(x) = ax^2 + bx + c$ that has **only one** *x*-intercept at -2 and *y*-intercept at 8 is
 - **A)** 2
- **B)** 16
- **C)** 18
- **D)** 8
- **E)** -21
- **2.** If -3 is a zero of the quadratic function $f(x) = ax^2 + bx + c$ and its graph has lowest point (-2, -2). What is the other zero of this quadratic function?
- 3. If a ball is thrown up in the air and its height H, in meters, is a function of time t, in seconds, given by $H(t) = -16t^2 + 128t + 105$, then the time it will take the ball to reach its maximum height is
 - A) 4 seconds
- B) 8 seconds C) 2 seconds D) 1 second
- E) 16 seconds
- **4.** If x = -3 is the axis of symmetry of the parabola $f(x) = -2x^2 4dx d^2 7$ for some constant d, then the maximum value of f(x) is equal to
 - **A)** 3
- **B)** 1
- **C)** -3
- **D)** no maximum value
- **E)** 2
- **5.** If u and v are two integers such that v 2u = 8 and the product uv is minimum, then find u + v.
- **6.** Carol has 2400 ft of fencing to fence in a rectangular horse corral.
 - (a) Find a function that models the area of the corral in terms of the width *x* of the corral.

KFUPM – PREP MATH PROGRAM – MATH001 – TERM 251

(b) Find the dimensions of the rectangle that maximize the area of the corral.

3.2 Recitation Exercises

1. If $f(x) = a(x+4)(x^2+2x+1)(3-x)$ has the graph below then a reasonable possible value of the leading coefficient a that will justify the end behavior (far left and far right behavior) of the graph is

2. Sketch the graph of the following polynomials

a)
$$P(x) = x^4 - x^3 - 2x^2$$
.

b)
$$Q(x) = |x^4 - x^3 - 2x^2|$$
.

3. Which one of the following polynomials has the graph given below?

i.
$$y = 2x^2(x-1)(x-2)$$

ii. $y = -2x^2(x-1)(x-2)$

iii.
$$y = -2x^2(x-1)^3(x-2)$$

v.
$$y = -2x(x-1)^3(x-2)^{\frac{1}{2}}$$

4. Graph the polynomial $p(x) = x^3(x+2)(x-3)^2$ and find the interval(s) on which the function is below *x*-axis.

3.3 Recitation Exercises

- **1.** When $x^3 3x^2 x 1$ is divided by x k, and the remainder is -4, then the sum of all values of k is
 - **A)** 3
- **B**) 1
- **C)** -1
- **D**) 0
- **E)** 2
- **2.** If $P(x) = x^{105} x^{10} 2x + 1$ is divided by x + 1, then the remainder is
 - **A)** 2
- **B)** 1
- C) -1 D) 0
- **E)** -2
- **3.** If x + 2 is a factor of the polynomial $P(x) = x^3 kx^2 + 3x + 7k$, then k = 2
 - A) $\frac{10}{3}$ B) $\frac{13}{3}$ C) $\frac{11}{3}$ D) $\frac{16}{3}$ E) $\frac{14}{3}$

- **4.** If $P(x) = -x^3 + kx^2 5x 20$ is divided by x + 2, then the set of all values of kwhich makes the remainder positive is

 - A) $\left(\frac{9}{2}, \infty\right)$ B) $\left(\frac{19}{2}, \infty\right)$ C) $\left(\frac{11}{2}, \infty\right)$ D) $\left(\frac{1}{2}, \infty\right)$

- **E)** Ø
- **5.** If $\frac{2x^5 + x^3 2x^2 + 3x 5}{x^2 3x + 1} = Q(x) + \frac{R(x)}{x^2 3x + 1}$, then what are Q(x) and R(x)?

3.4 Recitation Exercises

- 1. According to Descartes rule of signs, which one of the following is FALSE about the zeros of the polynomial $P(x) = x^5 - x^4 + 2x^2 - x - 1$? P(x) has
 - A) three negative zeros and two non-real complex zeros.
 - **B)** three positive zeros and two negative zeros.
 - C) three positive zeros and two non-real complex zeros.
 - D) one positive zero, two negative zeros, and two non-real complex zeros.
 - E) one positive zero and four non-real complex zeros.
- **2.** Find all rational zeros of $P(x) = x^3 7x^2 + 16x 12$ and write it in factored form.
- **3.** The sum of all real zeros of the polynomial $P(x) = 2x^4 + 15x^3 + 17x^2 + 3x 1$ is

- A) $-3 + \sqrt{10}$ B) $-\frac{3}{2}$ C) $-\frac{15}{2}$ D) $-3 \sqrt{10}$ E) -7
- **1.** The total number of the x-intercept(s) of the graph of the polynomial $P(x) = x^5 + 6x^4 + 13x^3 + 14x^2 + 12x + 8$ is
 - **A)** 0
- **B**) 1
- **C**) 2
- **D)** 3
- E) 4
- **2.** Sketch the graph of the polynomial $P(x) = 2x^3 7x^2 + 2x + 3$.
- 3. List all possible rational zeros given by the Rational Zeros Theorem, for the polynomial $P(x) = 12x^5 + 6x^3 - 2x - 8$.

3.5 Recitation Exercises

- **1.** If -i is a zero of the polynomial $P(x) = x^4 4x^3 + 5x^2 4x + 4$, then the number of the x-intercept(s) of the graph of P is
 - **A)** 0
- **B)** 1
- **C)** 2
- **D)** 3
- **E)** 4
- **2.** If 1+i is a zero of $P(x) = x^3 x^2 ix^2 16x + 16 + 16i$, then find the **sum of** all zeros of P(x)
 - **A)** 0
- **B)** 1 + i **C)** 1 i
- **D)** 4
- E) -4
- **3.** Find all the zeros of the polynomial $P(x) = x^5 + x^3 + 8x^2 + 8$.
- **4.** Find the polynomial of least degree for which 1 + i and -1 i are zeros and the y-intercept is -2 where the polynomial has:
 - a) Real coefficients.
 - **b)** Complex coefficients.

3.6 Recitation Exercises

- **1.** If $y = \frac{2}{3}$ is the horizontal asymptote of the function $y = \frac{ax-5}{3x-4}$, then the *x*-intercept of the graph is

- A) $\frac{4}{3}$ B) $\frac{5}{2}$ C) $\frac{5}{4}$ D) $\frac{3}{2}$ E) $-\frac{1}{2}$
- **2.** The graph of $y = \frac{x^2 + 3x 2}{2x^2 + x + 10}$ intersects its horizontal asymptote when x equals

- A) $\frac{14}{3}$ B) $-\frac{1}{2}$ C) $\frac{11}{5}$ D) $-\frac{2}{3}$ E) $\frac{14}{5}$

- **3.** The following figure represents the graph of
 - **A)** $y = \frac{x}{x-1}$
 - **B)** $y = \frac{x+1}{x-1}$
 - C) $y = \frac{x-1}{x+1}$
 - **D)** $y = \frac{2(x+1)}{x-1}$
 - E) $y = \frac{x+2}{x-1}$

- **4.** The graph of $y = \frac{6-ax}{5-(a-2)x}$ has vertical asymptote x = 5, then it has a horizontal asymptote given by

- A) $y = \frac{1}{3}$ B) $y = \frac{3}{2}$ C) y = 5 D) $y = \frac{6}{5}$ E) y = 3

KFUPM – PREP MATH PROGRAM – MATH001 – TERM 251

5. Find all the asymptotes and holes, if any, for the graph of $f(x) = \frac{x^4 - 4x^2}{x^3 - 2x^2 - 4x + 8}$.