9.2: (The Dot Product)

If θ is the smallest angle between the vector $u = \langle 2, 1 \rangle$ and $v = \langle -3, 1 \rangle$, then $\sin \theta =$

a) $\frac{\sqrt{2}}{2}$ b) $-\frac{\sqrt{2}}{2}$ c) $\frac{\sqrt{3}}{2}$ d) $\frac{1}{2}$ e) $-\frac{1}{2}$

The smallest positive angle between the vectors $u=\langle 2,-2\sqrt{3}\rangle$ and $v=-2\sqrt{3}i+2j$ is

- A) 120°
- B) 135°
- C) 30°
- D) 60°

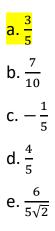
<mark>E) 150°</mark>

Let u and v be two vectors. If |u| = 4, |v| = 4 and $|u + v| = 5\sqrt{2}$, then $u \cdot v =$ A) 7 B) 8 C) 16 D) 9

E) 6

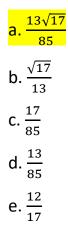
If u and v are unit vectors and the angle between u and v is $120^\circ,$ then |u-v| is equal to

<mark>a) √3</mark>
b) 5
c) $\sqrt{2}$
d) 0
e) $\frac{1}{2}$

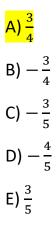

For the vectors $u = \langle 0, 5 \rangle$ and $v = \langle -2, 2 \rangle$, the smallest positive angle between the vectors u + i and v + j is

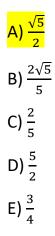
a.
$$\cos^{-1} \frac{1}{2}$$

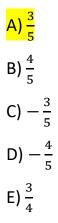
b. $\cos^{-1} \left(-\frac{2}{\sqrt{13}} \right)$
c. 120°
d. 45°
e. 135°

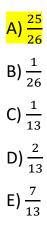

The smallest positive angle between the vectors $u = \cos\left(\frac{\pi}{2}\right)i + \sin\left(\frac{\pi}{2}\right)j$ and $w = \cos\left(\frac{3\pi}{4}\right)i + \sin\left(\frac{3\pi}{4}\right)j$, is equal to

- a) 75°
- b) 15°
- c) 105°
- <mark>d) 45°</mark>
- e) 30°


The cosine of the smallest positive angle between the vectors $u = \langle -1,1 \rangle$ and $v = \langle 1,7 \rangle$ is equal to


If α is the smallest positive angle between the two vectors u = 4i - 3j and v = < 4,1 >, then $\cos \alpha =$


If α is the angle between the vectors $\mathbf{u} = \mathbf{i} + 3\mathbf{j}$ and $\mathbf{v} = -\mathbf{i} + 3\mathbf{j}$, then $\tan \alpha =$


If θ is the smallest positive angle between the two vectors $u = \langle 3, 4 \rangle$ and v = 2i + j, then sec $\theta =$

If α is the angle between the vectors 3i + 4j and j, where $0^{\circ} \le \alpha \le 180^{\circ}$ then $\sin \alpha =$

If α is the smallest angle between the vectors $\vec{u} = \langle 3, -2 \rangle$ and $\vec{v} = \langle 2, -2 \rangle$, then $\cos^2 \alpha =$

If α is the smallest positive angle between the vectors u = (3, -4) and v = (-2,1), then $\cot \alpha =$

A) -2 B) $-\frac{2}{5}$ C) -3 D) $\frac{2}{5}$ E) $\frac{1}{2}$

The angle between the vectors $u = \langle 2, 1 \rangle$ and v = -3i + j is equal to

<mark>A) 135°</mark>

B) 210°

C) 45°

D) 120°

E) 150°

Which one of the following statements is TRUE?

A) If $\vec{v} = \langle -\frac{4}{5}, -\frac{3}{5} \rangle$, then \vec{v} is a unit vector.

B) If $\vec{u} = \langle 3, 2 \rangle$ and $\vec{v} = \langle -1, 1 \rangle$, then \vec{u} and \vec{v} are perpendicular.

C) If $\vec{u} = \langle 3, 2 \rangle$, then it can be written as $\vec{u} = 2\vec{i} + 3\vec{j}$.

D) If $\vec{u} = \langle 3, 2 \rangle$ and $\vec{v} = \langle 1, 3 \rangle$, then $\vec{u} \cdot \vec{v} = 3$.

E) If α is the angle between the vectors \vec{u} and \vec{v} , then $\tan \alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$

For the vectors s, u, v and w and the real number k, which one of the following statements is FALSE?

A) s = $\langle 1,1 \rangle$ is a unit vector B) u · v = v · u C) u · (v + w) = u · v + u · w D) (ku) · v = u · (kv) E) u · u = |u|² If α is the smallest positive angle between the vectors u=-i+5j and v=4i+6j , then $\alpha=$

<mark>A) 45°</mark>

B) 60°

C) 135°

D) 120°

E) 30°

Let \vec{u} and \vec{w} be two vectors such that $\vec{u} = 2i + 2\sqrt{3}j$ and \vec{w} has magnitude 3 and direction angle 120°, then the smallest angle between \vec{u} and \vec{w} is

- <mark>(a) 60°</mark>
- (b) 30°
- (c) 45°
- (d) 120°
- (e) 150°

Let $a = \cos^{-1}\left(-\frac{2}{\sqrt{5}}\right)$ be the smallest positive angle between the vectors u and v. If |u| = 5 and $|v| = \sqrt{5}$ are the magnitudes of u and v, then the dot product $u \cdot v =$

A) -10 B) $-\frac{25}{2}$ C) $-\frac{1}{2}$ D) -5 E) $-\sqrt{5}$

Which one of the following statements is TRUE?

(a) The vector (sin 25°, sin 65°) is a unit vector.

- (b) The vectors $\langle -1,1 \rangle$ and $\langle 2,-2 \rangle$ are perpendicular.
- (c) The vectors (1, -1) and (2, -2) have the same magnitude.
- (d) The vectors $\langle -4, -4 \rangle$ and $\langle 4, 4 \rangle$ have the same direction.
- (e) The dot product of two vectors is a vector.

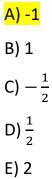
If the vectors $u = \langle \sin 20^\circ, \cos 20^\circ \rangle$ and $v = \langle \cos 80^\circ, -\sin 80^\circ \rangle$, then $u \cdot v = \langle \cos 80^\circ, -\sin 80^\circ \rangle$

A)
$$-\frac{\sqrt{3}}{2}$$

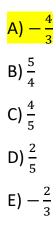
B) $-\frac{1}{2}$
C) $\frac{1}{2}$
D) cos 100°
E) $-\sin 100^{\circ}$

Let $u = \langle 2, -1 \rangle$, $v = \langle 1, -2 \rangle$, and w = 12i + aj. If w is orthogonal to the vector -2u + 3v, then a =

<mark>a) -3</mark>


b) 2

c) -6


d) 1

e) 4

Let u and v be two vectors such that u = ki - j and v is vector of magnitude $\frac{\sqrt{2}}{2}$ and direction angle $\frac{3\pi}{4}$. If u and v are perpendicular then k =

If $u = \cos \frac{3\pi}{4}i + \sin \frac{3\pi}{4}j$ and $v = \langle 4k + 1, k - 3 \rangle$ are perpendicular, then k =

If the vectors $u = \frac{5r}{7}i + \frac{1}{3}j$ and $v = <\frac{r}{5}, -\frac{2}{7}>$ are orthogonal, then a possible value of r is

a. $\frac{\sqrt{6}}{3}$ b. $\frac{\sqrt{3}}{3}$ c. $\frac{\sqrt{2}}{2}$ d. $\frac{\sqrt{6}}{2}$ e. $\frac{\sqrt{3}}{2}$

Let u and v be two vectors such that $u = -\sqrt{3}i - kj$ and v is a vector with magnitude 2 and direction angle 150°. If u and v are perpendicular vectors, then the value of k is

<mark>A) 3</mark>

- B) 2
- C) -1
- D) 4
- E) 0

If the vectors $\mathbf{u} = (k - 1)\mathbf{i} + \mathbf{j}$ and $\mathbf{v} = 3\mathbf{i} + (k + 1)\mathbf{j}$ are perpendicular, then k is equal to

A) $\frac{1}{2}$ B) $\frac{5}{8}$ C) 2 D) 4 E) $\frac{1}{4}$