9.2: (The Dot Product)

If θ is the smallest angle between the vector $u = \langle 2, 1 \rangle$ and $v = \langle -3, 1 \rangle$, then	
$\sin \theta =$	
a) $\frac{\sqrt{2}}{2}$	Angle
$b) - \frac{\sqrt{2}}{2}$	between two
$c)\frac{\sqrt{3}}{2}$	vectors.
a) $\frac{\sqrt{2}}{2}$ b) $-\frac{\sqrt{2}}{2}$ c) $\frac{\sqrt{3}}{2}$ d) $\frac{1}{2}$	
$(e) -\frac{1}{2}$	
The smallest positive angle between the vectors $\mathbf{u} = \langle 2, -2\sqrt{3} \rangle$ and $\mathbf{v} = -2\sqrt{3}\mathbf{i} + 2\sqrt{3}\mathbf{i}$	
2j is	
A) 120°	Angle
	between two
B) 135°	vectors.
C) 30°	
D) 60°	
E) 150°	
Let u and v be two vectors. If $ u = 4$, $ v = 4$ and $ u + v = 5\sqrt{2}$, then $u \cdot v =$	
A) 7	Anglo
B) 8	Angle between
C) 16	two
	vectors.
D) 9	
E) 6	

If u and v are unit vectors and the angle between u and v is 120° , then $ u-v $ is	
equal to	
	Anglo
a) $\sqrt{3}$	Angle between
b) 5	two vectors.
c) $\sqrt{2}$	vectors.
d) 0	
e) $\frac{1}{2}$	
For the vectors $u = \langle 0, 5 \rangle$ and $v = \langle -2, 2 \rangle$, the smallest positive angle between	
the vectors $u + i$ and $v + j$ is	
a. $\cos^{-1}\frac{1}{2}$	Angle
	between
b. $\cos^{-1}\left(-\frac{2}{\sqrt{13}}\right)$	two vectors.
c. 120°	
d. 45°	
e. 135°	
$\langle \pi \rangle$ $\langle \pi \rangle$	
The smallest positive angle between the vectors $u = \cos\left(\frac{\pi}{2}\right)i + \sin\left(\frac{\pi}{2}\right)j$ and	
$w = \cos\left(\frac{3\pi}{4}\right)i + \sin\left(\frac{3\pi}{4}\right)j$, is equal to	
	Angle
a) 75°	between two
b) 15°	vectors.
c) 105°	
d) 45°	
e) 30°	

The cosine of the smallest positive angle between the vectors $u = \langle -1,1 \rangle$ and $v = \langle -1,1 \rangle$	
$\langle 1,7 \rangle$ is equal to	
a. ³ / ₅	Angle
b. $\frac{7}{10}$	between
	two vectors.
$c\frac{1}{5}$	
d. $\frac{4}{5}$	
e. $\frac{6}{5\sqrt{2}}$	
If α is the smallest positive angle between the two vectors $u = 4i - 3j$ and $v = <$	
$4.1 >$, then $\cos \alpha =$	
a. $\frac{13\sqrt{17}}{85}$	Angle
	between
b. $\frac{\sqrt{17}}{13}$	two vectors.
c. $\frac{17}{85}$	
d. $\frac{13}{85}$	
e. $\frac{12}{17}$	
If α is the angle between the vectors $u = i + 3j$ and $v = -i + 3j$, then $\tan \alpha =$	
A) $\frac{3}{4}$	
B) $-\frac{3}{4}$	Angle between
C) $-\frac{3}{5}$	two vectors.
D) $-\frac{4}{5}$	
E) $\frac{3}{5}$	

If θ is the smallest positive angle between the two vectors $u = \langle 3,4 \rangle$ and $v = \langle 3,4 \rangle$	
$2i + j$, then $\sec \theta =$	
A) $\frac{\sqrt{5}}{2}$	Angle
$A) \frac{\sqrt{5}}{2}$ $B) \frac{2\sqrt{5}}{5}$	between two
$(C)^{\frac{2}{5}}$	vectors.
$D)\frac{5}{2}$	
$E)\frac{3}{4}$	
If α is the angle between the vectors $3i + 4j$ and j , where $0^{\circ} \le \alpha \le 180^{\circ}$ then	
$\sin \alpha =$	
A) $\frac{3}{5}$	Angle
B) $\frac{4}{5}$	between two
C) $-\frac{3}{5}$	vectors.
D) $-\frac{4}{5}$	
$E)\frac{3}{4}$	
If α is the smallest angle between the vectors $\vec{u} = \langle 3, -2 \rangle$ and $\vec{v} = \langle 2, -2 \rangle$, then	
$\cos^2 \alpha =$	
A) $\frac{25}{26}$	Angle
B) $\frac{1}{26}$	between two
$C)\frac{1}{13}$	vectors.
D) $\frac{2}{13}$	
E) $\frac{7}{13}$	

If α is the smallest positive angle between the vectors $\mathbf{u} = \langle 3, -4 \rangle$ and $\mathbf{v} = \langle 3, -4 \rangle$	
$\langle -2,1\rangle$, then cot $\alpha=$	
A) -2	Angle
	between
$(B) - \frac{2}{5}$	two
C) -3	vectors.
$D)\frac{2}{5}$	
$E)\frac{1}{2}$	
The angle between the vectors $u = \langle 2,1 \rangle$ and $v = -3i + j$ is equal to	
A) 135°	Angle
B) 210°	between
C) 45°	two vectors.
D) 120°	
E) 150°	
Which one of the following statements is TRUE?	
A) If $\vec{v} = \langle -\frac{4}{5}, -\frac{3}{5} \rangle$, then \vec{v} is a unit vector.	Angle
B) If $\vec{u} = \langle 3, 2 \rangle$ and $\vec{v} = \langle -1, 1 \rangle$, then \vec{u} and \vec{v} are perpendicular.	between
C) If $\vec{u} = \langle 3, 2 \rangle$, then it can be written as $\vec{u} = 2\vec{i} + 3\vec{j}$.	two vectors.
D) If $\vec{u} = \langle 3, 2 \rangle$ and $\vec{v} = \langle 1, 3 \rangle$, then $\vec{u} \cdot \vec{v} = 3$.	vccto13.
E) If α is the angle between the vectors \vec{u} and \vec{v} , then $\tan \alpha = \frac{\vec{u} \cdot \vec{v}}{ \vec{u} \vec{v} }$	

For the vectors s, u, v and w and the real number k , which one of the following statements is FALSE? A) $s = \langle 1,1 \rangle$ is a unit vector B) $u \cdot v = v \cdot u$ C) $u \cdot (v + w) = u \cdot v + u \cdot w$ D) $(ku) \cdot v = u \cdot (kv)$ E) $u \cdot u = u ^2$	Angle between two vectors.
If α is the smallest positive angle between the vectors $u=-i+5j$ and $v=4i+6j$, then $\alpha=$ A) 45° B) 60° C) 135° D) 120° E) 30°	Angle between two vectors.
Let \vec{u} and \vec{w} be two vectors such that $\vec{u}=2i+2\sqrt{3}j$ and \vec{w} has magnitude 3 and direction angle 120°, then the smallest angle between \vec{u} and \vec{w} is (a) 60° (b) 30° (c) 45° (d) 120° (e) 150°	Angle between two vectors.

Let $a = \cos^{-1}\left(-\frac{2}{\sqrt{5}}\right)$ be the smallest positive angle between the vectors u and v.	
If $ u = 5$ and $ v = \sqrt{5}$ are the magnitudes of u and v, then the dot product u ·	
v =	
A) -10	The Dot
B) $-\frac{25}{2}$	Product.
C) $-\frac{1}{2}$	
D) -5	
E) $-\sqrt{5}$	
Which one of the following statements is TRUE?	
which one of the following statements is TROL:	
(a) The vector (sin 25°, sin 65°) is a unit vector.	The Dot
 (b) The vectors ⟨-1,1⟩ and ⟨2, -2⟩ are perpendicular. (c) The vectors ⟨1, -1⟩ and ⟨2, -2⟩ have the same magnitude. 	Product.
(d) The vectors $\langle -4, -4 \rangle$ and $\langle 4, 4 \rangle$ have the same direction.	
(e) The dot product of two vectors is a vector.	
If the vectors $\mathbf{u} = \langle \sin 20^{\circ}, \cos 20^{\circ} \rangle$ and $\mathbf{v} = \langle \cos 80^{\circ}, -\sin 80^{\circ} \rangle$, then $\mathbf{u} \cdot \mathbf{v} =$	
A) $-\frac{\sqrt{3}}{2}$	
$(B) - \frac{1}{2}$	
$C)\frac{1}{2}$	The Dot Product.
D) cos 100°	
E) -sin 100°	

Let $u = \langle 2, -1 \rangle$, $v = \langle 1, -2 \rangle$, and $w = 12i + aj$. If w is orthogonal to the vector	
-2u + 3v, then $a =$	
a) -3	Orthogonal
b) 2	vectors.
c) -6	
d) 1	
e) 4	
Let u and v be two vectors such that $u = ki - j$ and v is vector of magnitude $\frac{\sqrt{2}}{2}$	
and direction angle $\frac{3\pi}{4}$. If u and v are perpendicular then $k=$	
A) -1	Orthogonal
B) 1	vectors.
$C) - \frac{1}{2}$	
$D)\frac{1}{2}$	
E) 2	
If $u = \cos \frac{3\pi}{4}i + \sin \frac{3\pi}{4}j$ and $v = \langle 4k + 1, k - 3 \rangle$ are perpendicular, then $k =$	
$A) - \frac{4}{3}$	
$B)\frac{5}{4}$	Orthogonal
$C)\frac{4}{5}$	vectors.
$D)\frac{2}{5}$	
$E) - \frac{2}{3}$	
3	

If $d_1 = \frac{5r_1}{r} = \frac{1}{r} = \frac{r}{r} = \frac{2}{r} = \frac{1}{r} = $	
If the vectors $u = \frac{5r}{7}i + \frac{1}{3}j$ and $v = \langle \frac{r}{5}, -\frac{2}{7} \rangle$ are orthogonal, then a possible	
value of r is	
a. $\frac{\sqrt{6}}{3}$	
b. $\frac{\sqrt{3}}{3}$	Orthogonal
$c.\frac{\sqrt{2}}{2}$	vectors.
b. $\frac{\sqrt{3}}{3}$ c. $\frac{\sqrt{2}}{2}$ d. $\frac{\sqrt{6}}{2}$ e. $\frac{\sqrt{3}}{3}$	
$\frac{2}{e}$	
Let u and v be two vectors such that $u = -\sqrt{3}i - kj$ and v is a vector with	
magnitude 2 and direction angle 150°. If u and v are perpendicular vectors, then	
the value of k is	
A) 3	Orthogonal vectors.
B) 2	vectors.
C) -1	
D) 4	
E) 0	
If the vectors $\mathbf{u} = (k-1)\mathbf{i} + \mathbf{j}$ and $\mathbf{v} = 3\mathbf{i} + (k+1)\mathbf{j}$ are perpendicular, then k is	
equal to	
$A)\frac{1}{2}$	Orthogonal
B) $\frac{5}{8}$	vectors.
C) 2	
D) 4	
$E)\frac{1}{4}$	