9.1: (Vectors in Two Dimensions)

If the vector u has magnitude 8, direction angle 120° and the vector $v=\sqrt{3}i+4j$, then the vector $u-\sqrt{3}v=$

- a) $\langle -7, 0 \rangle$
- b) $\langle 2, -1 \rangle$
- c) $\langle 7, 8\sqrt{3} \rangle$
- d) $\langle -7, -8\sqrt{3} \rangle$
- e) $(-3 + 4\sqrt{3}, -4 + 4\sqrt{3})$

Let u=i and $v=2\sqrt{3}i-4j$ be two vectors. If θ is the direction angle of the vector $2u-\sqrt{3}v$, then $\sin\theta=$

- A) $\frac{\sqrt{3}}{2}$
- B) $-\frac{\sqrt{3}}{2}$
- C) $\frac{1}{2}$
- D) $-\frac{1}{2}$
- E) $-\frac{\sqrt{2}}{2}$

If u is a vector of magnitude $8\sqrt{2}$ and direction 135° and v=3i-2j then the vertical component of the vector w=u+2v , is

- <mark>A) 4</mark>
- B) -4
- C) -2
- D) 6
- E) 2

If the vector ${\bf u}$ has magnitude 8 and directional angle π , and vector ${\bf v}=4{\bf i}+4\sqrt{3}{\bf j}$, then the directional angle a of the vector ${\bf u}+{\bf v}$ is

- A) $\alpha = \frac{2\pi}{3}$
- $B) a = \frac{11\pi}{6}$
- C) $a = \frac{4\pi}{3}$
- D) $a = \frac{5\pi}{6}$
- E) $\alpha = \frac{5\pi}{3}$

Given the vectors $u=\langle 9,\ 24\rangle$, and v=10i+12j. If $w=\frac{1}{2}u-\frac{3}{4}v$, then the direction angle of the vector w is

- a) $\frac{3\pi}{4}$
- b) $\frac{7\pi}{4}$
- c) $\frac{5\pi}{4}$
- d) $\frac{11\pi}{6}$
- e) $\frac{5\pi}{3}$

If $u=\langle 1,0\rangle$ and $v=\langle 2\sqrt{3},-4\rangle$, then the magnitude r and the direction angle θ of the vector $2u-\sqrt{3}v$ are

a)
$$r = 8$$
, $\theta = 120^{\circ}$

b)
$$r = 8$$
, $\theta = 150^{\circ}$

c)
$$r = 16$$
, $\theta = 210^{\circ}$

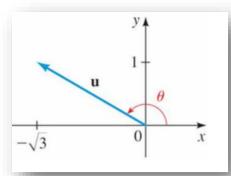
d)
$$r = 4$$
, $\theta = 300^{\circ}$

e)
$$r = 4$$
, $\theta = 330^{\circ}$

If $u=\langle -2\sqrt{3},4\rangle$ and $v=\sqrt{3}i+j,$ then the direction angle of the vector u-v is

- <mark>A) 150°</mark>
- B) 135°
- C) 30°
- D) 60°
- E) 120°

In the adjacent figure, the magnitude ${\bf M}$ and the direction θ of the vector ${\bf u}$ is


A)
$$M = 2$$
, $\theta = \frac{5\pi}{6}$

B) M =
$$\sqrt{2}$$
, $\theta = \frac{5\pi}{6}$

C) M =
$$\sqrt{2}$$
, $\theta = \frac{2\pi}{3}$

D)
$$M = 2$$
, $\theta = \frac{2\pi}{3}$

E)
$$M = 2$$
, $\theta = \frac{11\pi}{6}$

Given the vectors $u=\langle -4,10\rangle$, and $v=\langle -5,1\rangle$. If the vector $w=\langle a,b\rangle$ is a unit vector in the opposite direction of $\frac{1}{2}u-v$, then a+b is equal to

- a. $-\frac{7}{5}$
- b. $-\frac{3}{5}$
- c. $-\frac{2}{5}$
- d. $-\frac{4}{5}$
- e. $-\frac{9}{5}$

Let $u=\langle -6,1\rangle$ and $v=\langle -4,3\rangle$. If w=4u-3v, then a unit vector having the same direction as w is

- A) $\langle -\frac{12}{13}, -\frac{5}{13} \rangle$
- B) $\langle \frac{12}{13}, -\frac{5}{13} \rangle$
- C) $\langle -\frac{12}{13}, \frac{5}{13} \rangle$
- D) $\langle \frac{4}{5}, -\frac{3}{5} \rangle$
- E) $\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$