
6.4: (More Trigonometric Graphs)

The graph of the function $f(x) = -\tan\left(\frac{\pi}{4}x - \frac{\pi}{2}\right)$, $0 < x < 8$, is completely above	
the x-axis on	
(a) $(0,2) \cup (4,6)$	Trigonometric
(b) (1,3) U (5,7)	Graphs
(c) (0,3)	$(\tan \theta).$
(d) (0,4)	
(e) (2,4) ∪ (6,8)	
The number of the <i>x</i> -intercepts of the function $f(x) = -3\tan\left(2x - \frac{\pi}{4}\right)$ over the	
interval $[-\pi, 2\pi]$ is:	
<mark>A) 6</mark>	Trigonometric
B) 5	Graphs $(\tan \theta)$.
C) 4	
D) 3	
E) 2	
If the graph of the function $f(x) = a \tan(bx + c)$ has a period of $\frac{1}{4}$, a horizontal shift	
of $\frac{1}{2}$ to the right, and $f\left(\frac{7}{12}\right) = -\sqrt{3}$, then $\pi a + b =$	
<mark>Α) 3π</mark>	Trigonometric Graphs
B) 5π	$(\tan \theta)$.
C) -2π	
D) 7π	
E) 2π	

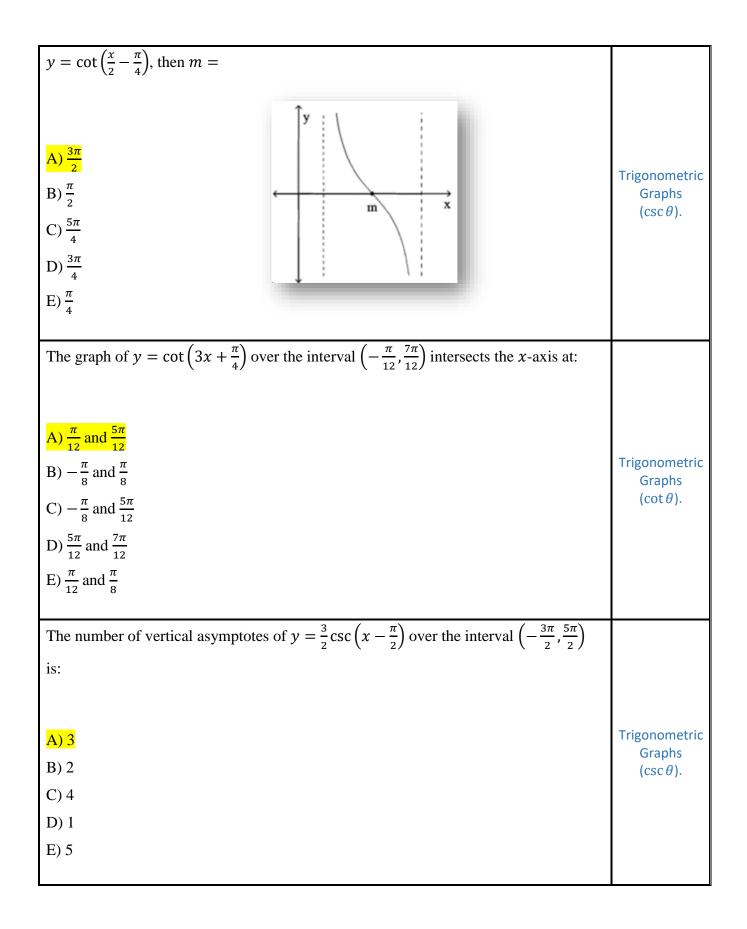
If 2π is the period of the function $f(x) = a \tan(bx)$ and $f\left(\frac{\pi}{3}\right) = -\sqrt{3}$, then $a + b = -\sqrt{3}$	
A) $-\frac{5}{2}$ B) $\frac{5}{2}$ C) $-\frac{3}{2}$ D) $\frac{3}{2}$ E) $-\frac{7}{2}$	Trigonometric Graphs (tan θ).
If $f(x) = a \tan(bx), b > 0$, is a tangent function with period 3 and $f(1) = 2\sqrt{3}$, then $f\left(\frac{3}{4}\right) =$ A) 2 B) $\sqrt{3}$ C) 1 D) $\frac{2\sqrt{3}}{3}$ E) $\frac{\sqrt{3}}{3}$	Trigonometric Graphs (tan θ).
The number of the x-intercepts of the graph of $f(x) = 2\tan\left(3x - \frac{\pi}{4}\right)$, where $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$, is A) 4 B) 3 C) 1 D) 5 E) 2	Trigonometric Graphs (tan θ).

The adjacent figure represents part of the graph of	
A) $y = -2\cot\left(2x + \frac{\pi}{2}\right)$ B) $y = -2\cot\left(x + \frac{\pi}{4}\right)$ C) $y = 2\tan\left(2x + \frac{\pi}{2}\right)$ D) $y = -2\tan(2x)$ E) $y = 2\tan\left(x + \frac{\pi}{4}\right)$	Trigonometric Graphs (cot θ).
The number of x-intercepts of the graph of the function $y = -3\cot\left(2x + \frac{\pi}{2}\right)$ over the	
interval $[-\pi,\pi]$, is equal to	
\wedge) 2	Trigonometric
A) 3 B) 2	Graphs
B) 2 C) 4	(cot <i>θ</i>).
D) 5	
E) 1	
If $y = 2\cot 2x$, then the number of vertical asymptotes over the interval $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$ is	
equal to	
	Trigonometric
(a) 2 (b) 1	Graphs
(b) 1 (c) 3	(cot <i>θ</i>).
(d) 4	
(e) 0	

For $-\frac{7\pi}{2} < x < 0$, the number of vertical asymptotes of the graph of $y = \csc\left(\frac{1}{2}x - \frac{\pi}{4}\right)$	
is:	
A) 1	Trigonometric
B) 4	Graphs $(\csc \theta)$.
C) 2	(00007)
D) 3	
E) 6	
$2 (- \pi)$	
Which one of the following statements is FALSE about the graph of $y = \frac{3}{2}\csc\left(x - \frac{\pi}{2}\right)$	
in the interval $[-\pi, 2\pi]$?	
A) the graph has four vertical asymptotes	Trigonometric
B) the graph has a period of 2π	Graphs ($\csc \theta$).
C) the graph has no <i>x</i> -intercept	
D) the graph has one <i>y</i> -intercept	
E) the range of the graph is $(-\infty, -3/2] \cup [3/2, \infty)$	
The equation of the graph below is	
The equation of the graph below is	
A) $y = 2\sec\left(2x - \frac{\pi}{4}\right)$ B) $y = -2\csc\left(2x - \frac{\pi}{4}\right)$	Trigonometric
C) $y = 2\csc\left(\frac{1}{2}x - \frac{\pi}{4}\right)$ D) $y = -2\sec\left(\frac{1}{2}x - \frac{\pi}{4}\right)$ $x = -2\sec\left(\frac{1}{2}x - \frac{\pi}{4}\right)$	Graphs (csc θ).
E) $y = -2\csc\left(\frac{1}{2}x - \frac{\pi}{4}\right)$	

The graph of $y = -\csc(2x + \pi) + 2$, where $-\frac{3\pi}{4} \le x \le \frac{3\pi}{4}$, has	
 A) three x - intercepts. B) four vertical asymptotes. C) one y - intercept. D) two vertical asymptotes. E) four x - intercepts. 	Trigonometric Graphs (csc θ).
The range of the graph of the function $f(x) = 1 - 2\csc x$ is (a) $(-\infty, -1] \cup [3, \infty)$ (b) $(-\infty, -2] \cup [2, \infty)$ (c) $(-\infty, -3] \cup [2, \infty)$ (d) $[1, \infty)$ (e) $[-1, 3]$	Trigonometric Graphs (cscθ).
The sum of all the vertical asymptotes of the graph of $y = -\csc\left(\frac{x}{3} - \frac{\pi}{6}\right)$ in the interval $[-4\pi, 2\pi]$, is A) -2π B) 4π C) 2π D) $-\pi$ E) π	Trigonometric Graphs (csc θ).

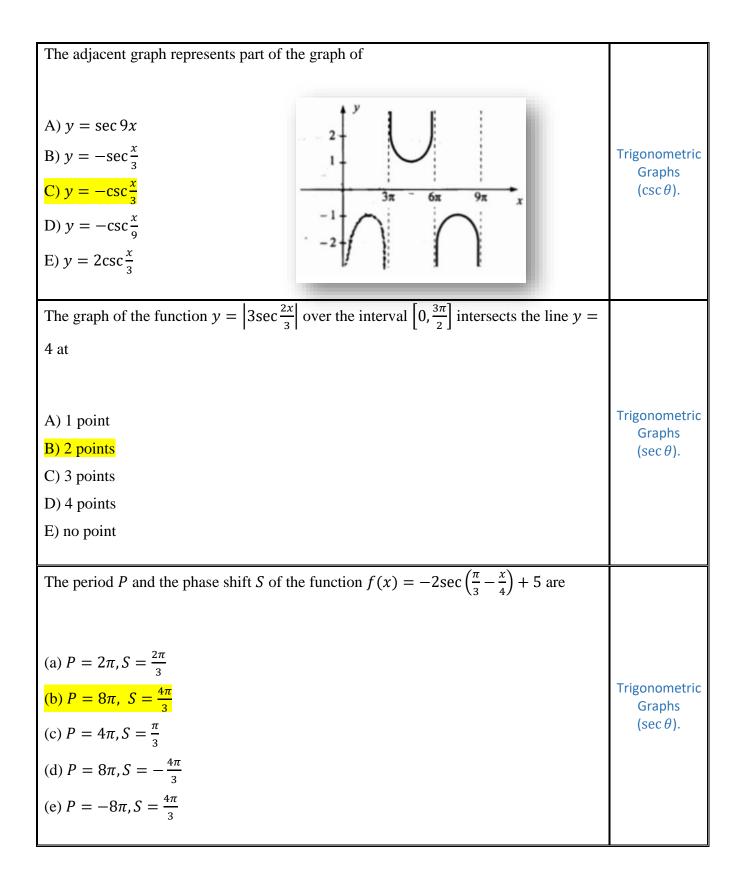
The graph of the function $f(x) = \csc\left(\frac{\pi x}{2}\right)$, $-2 < x < 2$, intersects the line $y = -2$ at	
A) 2 points B) 5 points C) 1 point D) 4 points E) 3 points	Trigonometric Graphs (cscθ).
For $0 < x < \frac{5\pi}{4}$, the line $y = -3$ intersects the graph of $y = \tan(2x - \pi)$ at: A) 2 points. B) 4 points. C) 5 points. D) one point. E) 3 points.	Trigonometric Graphs (tan θ).
Which one of the following statements is TRUE? A) The domain of $y = \sec(4x + \pi)$ is $x \neq \frac{n\pi}{4} - \frac{\pi}{8}$, where <i>n</i> is an integer. B) $\sec x = -\sec(-x)$ C) The graph of $y = \sec x$ intersects <i>x</i> -axis at $x = n\pi$ where n is an integer. D) $\sec 30^\circ = \frac{\sqrt{3}}{3}$ E) $\sec^2 x = 1 - \tan^2 x$	Trigonometric Graphs (sec θ).


the x-axis on the interval A) $\left(\frac{1}{6}, \frac{7}{6}\right)$ B) $\left(-\frac{1}{3}, \frac{1}{6}\right)$ C) $\left(\frac{7}{6}, \frac{5}{3}\right)$ D) $\left(0, \frac{1}{6}\right)$ E) $\left(-\frac{1}{3}, \frac{1}{6}\right) \cup \left(\frac{7}{6}, \frac{5}{3}\right)$ Trigonome Graphs (sec θ).	ric:
B) $\left(-\frac{1}{3}, \frac{1}{6}\right)$ C) $\left(\frac{7}{6}, \frac{5}{3}\right)$ D) $\left(0, \frac{1}{6}\right)$ E) $\left(-\frac{1}{3}, \frac{1}{6}\right) \cup \left(\frac{7}{6}, \frac{5}{3}\right)$:ric
B) $\left(-\frac{1}{3}, \frac{1}{6}\right)$ C) $\left(\frac{7}{6}, \frac{5}{3}\right)$ D) $\left(0, \frac{1}{6}\right)$ E) $\left(-\frac{1}{3}, \frac{1}{6}\right) \cup \left(\frac{7}{6}, \frac{5}{3}\right)$	tric
B) $\left(-\frac{1}{3}, \frac{1}{6}\right)$ C) $\left(\frac{7}{6}, \frac{5}{3}\right)$ D) $\left(0, \frac{1}{6}\right)$ E) $\left(-\frac{1}{3}, \frac{1}{6}\right) \cup \left(\frac{7}{6}, \frac{5}{3}\right)$	tric
$C) \left(\frac{7}{6}, \frac{5}{3}\right)$ $D) \left(0, \frac{1}{6}\right)$ $E) \left(-\frac{1}{3}, \frac{1}{6}\right) \cup \left(\frac{7}{6}, \frac{5}{3}\right)$	
C) $\left(\frac{7}{6}, \frac{5}{3}\right)$ D) $\left(0, \frac{1}{6}\right)$ E) $\left(-\frac{1}{3}, \frac{1}{6}\right) \cup \left(\frac{7}{6}, \frac{5}{3}\right)$	
$E)\left(-\frac{1}{3},\frac{1}{6}\right) \cup \left(\frac{7}{6},\frac{5}{3}\right)$	
$E)\left(-\frac{1}{3},\frac{1}{6}\right) \cup \left(\frac{7}{6},\frac{5}{3}\right)$	
r_{1}	—
If (a, b) is the minimum point on the graph of $f(x) = -2\sec\left(\frac{1}{2}\pi x + \pi\right)$, $3 < x < 5$,	
then $a + b =$	
A) 6	ric
$\begin{array}{c} \text{Graphs} \\ \text{Graphs} \\ (\sec\theta). \end{array}$	
C) -2	
D) π	
E) 0	
If the sense of the function $f(x) = -2aa(2x + 1) + 2ia(-aa-m) + [m-aa) + bar$	
If the range of the function $f(x) = -3\sec(2x + 1) + 2$ is $(-\infty, m] \cup [n, \infty)$, then m + n =	
A) 4 Trigonome Graphs	ric:
B) 6 $(\sec \theta)$.	
C) -4	
D) 0 E) 3	
E) 3	

The graph of the function $f(x) = -\sec(\pi x)$, $-\frac{1}{2} < x < 1$ is increasing on the interval	
A) $\left(0, \frac{1}{2}\right)$ B) $\left(-\frac{1}{2}, 0\right)$ C) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ D) $(0,1)$ E) $\left(\frac{1}{2}, 1\right)$	Trigonometric Graphs (sec θ).
$L_{2}(2,1)$	
On the interval $[-\pi/4,5\pi/4]$, if the the graph of $y = 2 + 3\sec(2x - \pi)$ has four vertical asymptotes at $x = a_1, a_2, a_3$ and a_4 , then $a_1 + a_2 + a_3 + a_4 =$ A) 2π B) 3π C) $5\pi/2$ D) $5\pi/4$ E) $9\pi/4$	Trigonometric Graphs (sec θ).
The range of the graph of $y = 2 - 2\sec(x + \pi)$ is A) $(-\infty, 0] \cup [4, \infty)$ B) $(-\infty, -2] \cup [2, \infty)$ C) $(-\infty, 1] \cup [2, \infty)$ D) $[-2,2]$ E) $[0,4]$	Trigonometric Graphs (sec θ).

The given graph in the adjacent figure represents part of the graph of the function	
A) $y = \sec(x + \pi)$ B) $y = \csc(x + \pi/2)$ C) $y = \csc(x - \pi/2)$ D) $y = \sec(x - \pi)$ E) $y = \sec(x - \pi/2)$	Trigonometric Graphs (sec θ).
The graph of the function $f(x) = -\sec\left(\frac{\pi}{2}x\right)$, over the interval [0,4], intersects the	
line $y = 1$ at	
 A) 1 point B) 2 points C) 5 points D) 3 points E) 4 points 	Trigonometric Graphs (sec θ).
If P is the period of the graph of $f(x) = 5\sec 2\left(x - \frac{\pi}{4}\right)$ and A is the amplitude of $y = -\pi \sin\left(\frac{x}{3}\right)$, then A + P = A) 2π B) 0 C) 4π D) π E) 3π	Trigonometric Graphs (sec θ).

The number of vertical asymptotes of the graph of $y = \csc\left(\frac{1}{2}x - \frac{\pi}{4}\right)$ over the interval	
$\left(0,\frac{9\pi}{2}\right)$ is	
	Trigonometric
A) 2	Graphs
B) 1	$(\csc \theta).$
C) 3	
D) 4	
E) 5	
The number of vertical asymptotes of the graph of the function $f(x) = 2 + 3\csc(2x - x)$	
π), on the interval $[-\pi,\pi]$ is equal to	
(a) 5	
(b) 6	Trigonometric
(c) 4	Graphs $(\csc \theta)$.
(d) 3	(
(e) 2	
The number of x-intercepts of the graph of $y = \frac{2}{3} \tan\left(\frac{3x}{4} - \pi\right)$ over the interval	
$\left(0,\frac{10\pi}{3}\right)$ is	
A) 2	Trigonometric Graphs
B) 1	$(\tan \theta)$.
C) 3	
D) 4	
E) 5	


In which one of the following intervals is the graph of $y = \sec\left(2x + \frac{\pi}{3}\right)$ below the x-	
axis? A) $\left(\frac{\pi}{12}, \frac{7\pi}{12}\right)$ B) $\left(\frac{7\pi}{12}, \frac{13\pi}{12}\right)$ C) $\left(\frac{7\pi}{12}, \frac{5\pi}{6}\right)$ D) $\left(\frac{5\pi}{6}, \frac{13\pi}{12}\right)$ E) $\left(\frac{\pi}{3}, \frac{5\pi}{6}\right)$	Trigonometric Graphs (sec θ).
An equation for the given graph is A) $y = -1 - \tan(2x - \pi/2)$ B) $y = -1 - \tan(x - \pi/4)$ C) $y = -1 + \cot(x/2)$ D) $y = 1 + \cot 2x$ E) $y = 1 - \cot(x - \pi/4)$	Trigonometric Graphs (cot θ).
The graph of $y = -\csc(2x + \pi) + 2$, where $-\frac{3\pi}{4} \le x \le \frac{3\pi}{4}$, has A) three <i>x</i> - intercepts. B) four vertical asymptotes. C) one <i>y</i> - intercept. D) two vertical asymptotes. E) four <i>x</i> - intercepts.	Trigonometric Graphs (cot θ).

The number of the x - intercepts of the function $f(x) = -3\tan\left(2x - \frac{\pi}{4}\right)$ over the	
interval $[-\pi, 2\pi]$ is:	
<mark>A) 6</mark>	Trigonometric
B) 5	Graphs $(\tan \theta)$.
C) 4	
D) 3	
E) 2	
For $0 < x < \frac{2}{3}$, the graph of the function $y = 2\csc 3\pi x$ is decreasing on	
3	
A) $\left(0, \frac{1}{6}\right) \cup \left(\frac{1}{2}, \frac{2}{3}\right)$ B) $\left(\frac{1}{6}, \frac{1}{3}\right) \cup \left(\frac{1}{3}, \frac{1}{2}\right)$ c) $\left(0, \frac{1}{3}\right)$	Trigonometric Graphs (sec θ).
D) $\left(\frac{1}{3}, \frac{2}{3}\right)$	
E) $\left(\frac{1}{6}, \frac{1}{3}\right) \cup \left(\frac{1}{2}, \frac{2}{3}\right)$	
The figure below, represents part of the graph of	
A) $y = 2\sec(2\pi x)$ B) $y = 2\csc(2\pi x)$ C) $y = 2\sec(\frac{\pi}{2}x)$ D) $y = -2\sec(2\pi x)$ E) $y = -2\csc(\frac{\pi}{2}x)$	Trigonometric Graphs (cscθ).

The equation of a tangent function with period 2π and phase shift $\frac{\pi}{2}$ is	
A) $y = \tan\left(\frac{x-\pi}{4}\right)$	
B) $y = \tan\left(\frac{2t-\pi}{2}\right)$	Trigonometric Graphs
C) $y = \tan\left(\frac{x-2\pi}{2}\right)$	$(\tan\theta).$
D) $y = \tan\left(\frac{2x-\pi}{4}\right)$	
E) $y = \tan\left(\frac{x-2\pi}{4}\right)$	
Over the interval $\left[-\frac{3\pi}{2}, 3\pi\right]$, the graph of $y = \tan \frac{2x}{3}$ has	
Over the interval $\left[-\frac{1}{2}, 5n\right]$, the graph of $y = \tan \frac{1}{3}$ has	
A) four vertical asymptotes	
	Trigonometric
B) three vertical asymptotes	Graphs (tan θ).
C) five <i>x</i> -intercepts	
D) five vertical asymptotes	
E) no <i>y</i> -intercept	
The graph of $y = -2\csc\frac{\pi x}{2}$, $-4 < x < 0$, is increasing on	
A) $(-4, -3) \cup (-1, 0)$	Tuinen en etuie
B) (-2,0)	Trigonometric Graphs
C) (-3, -1)	$(\csc \theta).$
D) (-3,-2)	
E) (-4, -2)	

Let $f(x) = 1 + \csc\left(2x + \frac{\pi}{6}\right)$. Then which one of the following statements is TRUE?	
 A) the graph of <i>f</i> has infinitely many <i>x</i>-intercepts B) the range of <i>f</i> is (-∞, -1] ∪ [1, ∞) C) the period of <i>f</i> is 2π D) the phase shift is -^π/₆ E) the graph of <i>f</i> has no <i>y</i>-intercept 	Trigonometric Graphs (cscθ).
If $f(x) = -a \tan bx$, $a > 0, b > 0$, is a function of period 3, then $f\left(\frac{3}{4}\right)$ is A) equal to $-\frac{a}{b}$ B) undefined C) equal to $\frac{a}{b}$ D) equal to $-a$ E) equal to b	Trigonometric Graphs (tan θ).
The number of vertical asymptotes of $y = 3 + 2\cot \frac{\pi x}{3}$ over the interval [-4,4] is A) 6 B) 3 C) 2 D) 1 E) 4	Trigonometric Graphs (cotθ).

If $y = 2\cot 2x$, then the number of vertical asymptotes over the interval $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$ is	
equal to	
	Trigonometric
(a) 2 (b) 1	Graphs
(b) 1 (c) 2	$(\cot \theta).$
$\begin{array}{c} (c) \ 3 \\ (d) \ 4 \end{array}$	
$\begin{pmatrix} d \end{pmatrix} 4$	
(e) 0	
The number of the vertical asymptotes of the graph of $y = -3\cot\left(\frac{2x}{3}\right)$ on the interval	
$\left[-\frac{3\pi}{4},\frac{15\pi}{4}\right]$ is	
(a) 3	Trigonometric Graphs
(b) 2	$(\cot \theta).$
(c) 4	
(d) 5	
(e) 6	
Which statement shout the graph of the function $f(x) = -2\cos^{\pi} x$ over the interval	
Which statement about the graph of the function $f(x) = -3\sec\frac{\pi}{4}x$ over the interval	
$\left[\frac{5}{2}, 5\right]$ is true?	
A) There is a minimum but no maximum for the function.	Trigonometric
B) The maximum value of the function is $f\left(\frac{5}{2}\right)$	Graphs (sec θ).
C) The maximum value of the function is $f(5)$	
D) The graph has neither a minimum not a maximum for the function.	
E) The maximum value of the function is $f(4)$	

The number of vertical asymptotes of $f(x) = 2\cot\frac{3x}{2}$ in the interval $\left(-\frac{\pi}{6}, 3\pi\right)$ is	
A) 5	Trigonometric
B) 9	Graphs
C) 3	$(\cot \theta).$
D) 2	
E) 4	