6.3: (Trigonometric Graphs)

If $y = -2 - 3\sin\left(2x + \frac{2\pi}{3}\right)$, M is the maximum, P the period and S the phase shift then $M + \frac{P+S}{\pi}$ is equal to

For $-\frac{\pi}{2} \le x \le \frac{9\pi}{2}$, the graph of the function $f(x) = 2\cos\left(\frac{x}{2} - \frac{\pi}{4}\right)$ intersects the line y = 1 at

- (A) three points
- (B) two points
- (C) four points
- (D) one point
- (E) no point

The graph of $y = -\sin(\pi x + \pi)$, $-1 \le x \le 1$, is increasing on the interval:

A)
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$

B) $\left(-1, \frac{1}{2}\right)$
C) $\left(-\frac{1}{2}, 1\right)$
D) $(0,1)$
E) $\left(\frac{1}{2}, 1\right)$

The graph of $y = -\frac{2}{3}\sin\frac{\pi}{4}x$, with $-8 \le x \le 0$,

A) is above the x-axis on the interval (-4,0)

- B) intersects the x-axis at two points
- C) has maximum value of 2/3 in the interval [-8, -4]
- D) is increasing on the intervals (-8, -6) and (-2, 0)
- E) is decreasing on the interval (-6, -2)

The graph of the function $f(x) = -3\sin(\frac{1}{3}x)$. with $0 \le x \le 6\pi$, lies completely below the *x*-axis on the interval

- <mark>(a) (0,3π)</mark>
- (b) $(0, 6\pi)$
- (c) $(3\pi, 6\pi)$
- (d) $(4\pi, 6\pi)$
- (e) (π, 6π)

Which one of the following statements is FALSE?

- A) $f(x) = x + \cos x \sin x$ is an odd function.
- B) If $\frac{\pi}{2} < x < \pi$, then $\sin x \cos x > 0$.
- C) $f(x) = \cos x \sin^2 x$ is an odd function.
- D) $f(x) = 3 + \cos x$ is an even function.
- E) The period of the function $f(x) = -\sin(2\pi x)$ is 1

The graph of the function $y = 3\sin|x|$, $-\pi \le x \le \frac{\pi}{2}$, is decreasing on the interval

A)
$$(-\pi, 0)$$

B) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
C) $\left(-\frac{\pi}{2}, 0\right)$
D) $\left(-\pi, -\frac{\pi}{2}\right)$
E) $\left(0, \frac{\pi}{2}\right)$

The graph of the function $f(x) = -3\sin\left(\frac{\pi}{2} - 2x\right)$, $\frac{\pi}{4} \le x \le \frac{5\pi}{4}$ is below the x - axis on

A)
$$\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$$

B) $\left(\frac{\pi}{2}, \pi\right)$
C) $\left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$
D) $\left(\frac{\pi}{4}, \pi\right)$
E) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

The range of the function $f(x) = 1 + \sqrt{4 - 4\sin^2 x}$, is

A) [1,5] B) [0,2] C) [-1,3] D) [1,3] E) [-3,5]

If the range of the function $y = K - 5\sin\left(\frac{\pi}{2}x - \frac{\pi}{2}\right)$ is [-7,3], then K =

<mark>A) -2</mark> B) π + 2 C) 0 D) 4

E) 2 – π

The graph of $y = 3\sin |\pi x|$, with $-1 \le x \le 1$, is increasing on the interval

A)
$$\left(-1, -\frac{1}{2}\right) \cup \left(0, \frac{1}{2}\right)$$

B) $\left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, 1\right)$
C) $\left(-1, \frac{1}{2}\right)$
D) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
E) $\left(-\frac{1}{2}, 1\right)$

Which one of the following statements is FALSE about the graph of the function

$$f(x) = -\frac{1}{2}\sin\left(\frac{\pi x}{2}\right), -2 \le x \le 2$$
?

A) is increasing on the interval (-1,1).

- B) has three *x*-intercepts.
- C) lies above the x-axis on the interval (-2,0).
- D) lies below the x-axis on the interval (0,2).
- E) passes through the origin.

The graph of the function $f(x) = 2\sin(4x + \pi)$, where $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$,

A) has three *x*-intercepts

- B) has no y-intercept
- C) is increasing on the interval $\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$ D) is below the *x*-axis in the interval $\left(-\frac{\pi}{4}, 0\right)$ E) is above the *x*-axis in the interval $\left(0, \frac{\pi}{4}\right)$

Which one of the following statements is TRUE about the function $f(x) = -1 + \frac{1}{2}\sin(2x - 3\pi)$?

A) The range of the function is $\left[-\frac{3}{2},-\frac{1}{2}\right]$

- B) The vertical translation of the graph of the function is $\frac{1}{2}$ unit up
- C) The period of the function is 2π
- D) The phase shift of the function is 3π unit to the right
- E) The amplitude of the function is $\frac{3}{2}$

The graph of $y = \frac{5}{2} - \cos\left[3\left(x - \frac{\pi}{6}\right)\right]$ has:

A) range $\left[\frac{3}{2}, \frac{7}{2}\right]$

- B) period π
- C) phase shift $\frac{\pi}{2}$ to the left
- D) amplitude 3
- E) y-intercept $-\frac{5}{2}$

The number of x-intercepts of the graph of $y = -2\cos \pi x$, $-\frac{3}{2} \le x < \frac{5}{2}$. is

- A) 5
- B) 1
- C) 3
- <mark>D) 4</mark>
- E) 2

The range of the function $y = 2 - |3\cos(3x - \pi)|$, is

If the adjacent figure represents the graph of $y = -2\cos(bx + c)$, then

A) $b = \pi$ and $c = \frac{\pi}{2}$ B) $b = \pi$ and $c = -\frac{\pi}{2}$ C) $b = 2\pi$ and $c = -\frac{\pi}{4}$ D) $b = 2\pi$ and $c = \frac{\pi}{4}$ E) $b = \pi$ and $c = \frac{\pi}{4}$

The graph of the function $f(x) = 3\cos(2\pi x)$ over [-1,1] intersects the line y = -2 at

A) 5 points

B) 7 points

C) 8 points

D) 3 points

<mark>E) 4 points</mark>

The graph of the function $f(x) = -2\cos\left(\frac{\pi}{4}x - \frac{\pi}{2}\right)$, $0 \le x \le 10$ is increasing on the interval

<mark>A) [2,6]</mark>

B) [0,4]
C) [0,4] ∪ [8,10]
D) [8,10]
E) [3,4] ∪ [9,10]

If the adjacent figure represents the graph of the function $y = a\cos(kx + b)$,

If the adjacent figure represents the graph of $y = a\cos(bx) + 1$, then $2b - \pi a =$

<mark>Α) 3π</mark> Β) 2π

C) -2π

D) -3π

E) π

If the graph of the function $f(x) = 2\cos(bx + c), b > 0$ and $-\frac{\pi}{2} \le c \le \frac{\pi}{2}$, has period $\frac{2\pi}{3}$ and passes through the point (0,2), then b + c =

A)	3
----	---

B) 0

- C) 4
- D) 5
- E) 2

The range of the function $f(x) = 3 - |\cos(x - \pi)|$ is

<mark>A) [2,3]</mark>

- B) [2,4]
- C) [-3,3]
- D) (2,4)
- E) (2,3)

Which one of the following statements is FALSE about the function $f(x) = 5\cos\left(3x - \frac{\pi}{4}\right)$?

- (a) The graph of f(x) has y-intercept at y=-1
- (b) The range of f(x) is [-5,5]
- (c) The horizontal shift of the graph of f(x) is $\frac{\pi}{12}$ units to the right
- (d) The amplitude of the graph of f(x) is 5
- (c) The period of f(x) is $\frac{2\pi}{3}$

The graph of the function $f(x) = -2\sin(3x)$ over $[0,2\pi]$ intersects the line $y = \frac{3}{2}$

- at
- A) 3 points.
- B) 7 points.
- C) 6 points.
- D) 2 points.
- E) 5 points

The equation of the function whose part of its graph is drawn below is

If A is the amplitude, P is the period and F is the phase shift of the graph of the function $f(x) = -3\cos\left(\frac{\pi x}{5} - 2\pi\right)$, then $\frac{-2A+P-F}{2} =$ A) $-3 - 10\pi$ B) -3C) 3 D) $3 + 10\pi$ E) $-3 + 10\pi$ The range *R* and the period *P* of the function $y = -\left|3\sin\frac{x}{2}\right|$ are given by

- (a) $R = [-3,0], P = 2\pi$
- (b) $R = [-3,3], P = 2\pi$
- (c) $R = [-3,0], P = 4\pi$ (d) $R = [-3,0], P = \pi$
- (e) $R = [-3,0], P = \frac{\pi}{2}$

The graph of
$$y = -\frac{1}{2}\sin \pi x$$

- A) has a maximum of $\frac{1}{2}$ in the interval [3,4]
- B) is decreasing on the interval [1,2]
- C) is increasing on the interval [0,1]
- D) has a minimum of $-\frac{1}{2}$ in the interval [-1,0
- E) has a minimum of $-\frac{1}{2}$ in the interval [1,2]

The number of points of intersection of y = 1 and $y = -2\sin\frac{\pi x}{3}$ in the interval [-3,9]

A) 2

<mark>B) 4</mark>

- C) 5
- D) 3
- E) 6

Let $f(x) = -\frac{1}{3}\cos(2\pi x)$ and A be its amplitude, P be its period and (a, b) be the highest point of the function in the interval [0,1]. Then, A + P + a - b =

The range of the function $f(x) = -\left|3\sin\frac{2x}{3}\right|$ is

A) [-3,0] B) [0,3] C) [-3,3] D) [-1,0] E) [-1,1]

The function
$$y = \cos\left(\frac{x}{3} - \frac{\pi}{3}\right)$$
, for $-\frac{13\pi}{2} \le x \le \frac{17\pi}{2}$ has

A) three maximum values

- B) two maximum values
- C) four maximum values
- D) five maximum values
- E) six maximum values

If the adjacent figure represents the graph of the function $y = a\sin(bx + c)$,

The graph of the function $y = \frac{1}{2}\cos\frac{\pi}{2}x$ increases over the interval

- <mark>A) (2,4)</mark>
- B) (0,2)
- C) (3,5)
- D) (1,3)
- E) (2,5)

The adjacent figure represents part of the graph of

The graph of $y = -|\sin \pi x|$ over the interval $\left[\frac{1}{2}, \frac{3}{2}\right]$ intersects the line $y = -\frac{1}{2}$ at:

- <mark>(a) 2 points</mark>
- (b) 1 point
- (c) 3 points
- (d) 4 points
- (e) no point

If the adjacent figure represents the graph of the function $y = a\cos(bx + bx)$

Over the interval $\left[-\frac{\pi}{4}, \frac{15\pi}{4}\right]$, the function $y = -\sin\left(\frac{x}{2} + \frac{\pi}{8}\right)$ is decreasing on the interval(s)

A) $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$ and $\left[\frac{11\pi}{4}, \frac{15\pi}{4}\right]$ B) $\left[\frac{3\pi}{4}, \frac{11\pi}{4}\right]$ C) $\left[-\frac{\pi}{4}, \frac{5\pi}{4}\right]$ and $\left[\frac{11\pi}{4}, \frac{15\pi}{4}\right]$ D) $\left[0, \frac{3\pi}{4}\right]$ and $\left[\frac{5\pi}{4}, \frac{11\pi}{4}\right]$ E) $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$ and $\left[\frac{7\pi}{4}, \frac{11\pi}{4}\right]$ The function $y = -2 + 5\cos(2x + 3\pi)$ has

A) range = [-7,3], phase shift = $\frac{3\pi}{2}$ units to the left B) range = [-5,5] phase shift = 3π units to the left C) range = [-7,3] phase shift = $\frac{3\pi}{2}$ units to the right D) range = [-2,2], phase shift = 3π units to the right E) range = [-7,7], phase shift = $\frac{3\pi}{2}$ units to the left

$$y = -2\cos(bx + c)$$
, then

A) $b = \frac{\pi}{2}$ and $c = \frac{\pi}{2}$ B) $b = \frac{\pi}{2}$ and $c = \frac{\pi}{4}$ C) $b = \pi$ and $c = +\frac{\pi}{2}$ D) b = 2n and $c = -\frac{\pi}{4}$ E) $b = 2\pi$ and $c = -\pi$

Which one of the following statements is TRUE?

- A) The equation sin x = 2 has no solution in the interval $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$.
- B) Domain of $y = \sin(x + \pi)$ is $[-\pi, \infty)$.
- C) The period of the graph of $y = \sin[\pi(2x 1)]$ is π .
- D) The range of the function $y = 2\sin(x \pi) 1$ is [-2,2].
- $\mathsf{E})\,(\sec x)(\sin x)=1.$

$$y = \frac{1}{2}\cos(bx + c), \frac{\pi}{2} \le x \le \frac{9\pi}{2}$$
 then

A) $b = \frac{1}{2}, c = -\frac{\pi}{4}$ B) $b = \frac{1}{2}, c = -\frac{\pi}{2}$ C) $b = 2, c = -\frac{\pi}{2}$ D) $b = \frac{1}{4}, c = \frac{\pi}{2}$ E) $b = \frac{1}{4}, c = \frac{\pi}{4}$

The graph of the function $y = 2\sin\frac{1}{4}x$, for $-8\pi \le x \le 8\pi$, has

A) two maximum values and five *x*-intercepts

- B) three maximum values and four *x*-intercepts
- C) four maximum values and three *x*-intercepts
- D) five maximum values and two *x*-intercepts
- E) three maximum values and three *x*-intercepts

For $-8 \le x \le 8$, the graph of the function $y = -\frac{3}{2}\sin\left(\frac{\pi}{4}x\right)$ lies below the *x*-axis in the interval(s) [Hint: Sketch the graph]

- A) (-8, -4) and (0, 4)
- B) (-4,0) and (4,8)
- C) (-6, -2) and (2,6)
- D) (-4,0) and (0,4)
- E) (-4,4)

The graph of the function $y = 3\cos\left(\frac{1}{2}x - \frac{\pi}{4}\right)$, on the interval $\left[-\frac{7\pi}{2}, \frac{9\pi}{2}\right]$ intersects the line y = 2 at

<mark>A) four points</mark>

- B) six points
- C) three points
- D) five points

E) no points

$$y = -2\cos(bx + c), -\frac{2\pi}{3} \le x \le \frac{2\pi}{3}$$
 and $b > 0$, then

A)
$$b = 3, c = \pi$$

B) $b = \frac{1}{3}, c = \pi$
C) $b = 3, c = -\frac{2\pi}{3}$
D) $b = \frac{2}{3}, c = \frac{2\pi}{3}$
E) $b = \frac{2}{3}, c = \frac{\pi}{3}$

If the adjacent figure represents the graph of $y = a\cos(bx + c)$ over one period where $0 < c \le 2\pi$ and a < 0, then 8a + b + c =

The graph of $y = -4\sin(2x - \pi)$ is below *x*-axis on the interval :

A) $\left(\frac{\pi}{2}, \pi\right)$ B) $(0, \pi)$ C) $\left(-\pi, -\frac{\pi}{2}\right)$ D) $\left(0, \frac{\pi}{2}\right)$ E) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ The adjacent graph represents a part of the graph of

A)
$$y = \sin\left(x + \frac{\pi}{4}\right)$$

B) $y = \sin\left(x - \frac{\pi}{4}\right)$
C) $y = \cos\left(x + \frac{\pi}{4}\right)$
D) $y = 1 - \cos\left(x - \frac{\pi}{4}\right)$
E) $y = -1 - \sin\left(x - \frac{\pi}{4}\right)$

If
$$f(x) = a \sin bx$$
, $b > 0$ has a period of $\frac{2\pi}{3}$ and $f\left(\frac{\pi}{2}\right) = 2$, then a is:

<mark>A) -2</mark>

B) 2

C) 2π

D) –π

E) π

The graph of $y = \frac{5}{2} - \cos\left[3\left(x - \frac{\pi}{6}\right)\right]$ has:

A) range $\left[\frac{3}{2}, \frac{7}{2}\right]$

- B) period π
- C) phase shift $\frac{\pi}{2}$ to the left.
- D) amplitude 3
- E) *y*-intercept $-\frac{5}{2}$

The range of the function $f(x) = 2 - \left| \cos \left(-\frac{\pi x}{4} \right) \right|$ is equal to:

A) [1, 2] B) [0, 1] C) [2, 3]

- D)[-1, 0]
- E) [-2, 0]