6.3: (Trigonometric Graphs)

If $y = -2 - 3\sin\left(2x + \frac{2\pi}{3}\right)$, M is the maximum, P the period and S the phase shift	
then $M + \frac{P+S}{\pi}$ is equal to	
$A)\frac{7}{3}$	Trigonometric
B) $\frac{-1}{3}$	Graphs (sin θ).
$C)\frac{4}{3}$	
D) $\frac{17}{3}$	
$\frac{5}{3}$	
3	
The graph of $y = -\sin(\pi x + \pi)$, $-1 \le x \le 1$, is increasing on the interval:	
A) $\left(-\frac{1}{2},\frac{1}{2}\right)$	
B) $\left(-1,\frac{1}{2}\right)$	Trigonometric Graphs
C) $\left(-\frac{1}{2},1\right)$	$(\sin \theta)$.
D) (0,1)	
$E)\left(\frac{1}{2},1\right)$	
2 π	
The graph of $y = -\frac{2}{3}\sin\frac{\pi}{4}x$, with $-8 \le x \le 0$,	
A) is above the x-axis on the interval $(-4,0)$	
B) intersects the x -axis at two points	Trigonometric
C) has maximum value of $2/3$ in the interval $[-8, -4]$	Graphs (sin θ).
D) is increasing on the intervals $(-8, -6)$ and $(-2, 0)$, ,
E) is decreasing on the interval $(-6, -2)$	

(1)	
The graph of the function $f(x) = -3\sin\left(\frac{1}{3}x\right)$. with $0 \le x \le 6\pi$, lies completely	
below the x -axis on the interval	
(a) (0.3π)	Trigonometric
(b) $(0,6\pi)$	Graphs
(c) $(3\pi, 6\pi)$	$(\sin \theta)$.
(d) $(4\pi, 6\pi)$	
(e) $(\pi, 6\pi)$	
Which one of the following statements is FALSE?	
A) $f(x) = x + \cos x \sin x$ is an odd function.	
B) If $\frac{\pi}{2} < x < \pi$, then $\sin x - \cos x > 0$.	Trigonometric Graphs
C) $f(x) = \cos x \sin^2 x$ is an odd function.	$(\sin \theta)$.
D) $f(x) = 3 + \cos x$ is an even function.	
E) The period of the function $f(x) = -\sin(2\pi x)$ is 1	
π	
The graph of the function $y = 3\sin x , -\pi \le x \le \frac{\pi}{2}$, is decreasing on the interval	
A) $(-\pi, 0)$	
A) $(-\pi, 0)$ B) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	Trigonometric Graphs
C) $\left(-\frac{\pi}{2},0\right)$	$(\sin \theta)$.
$ \begin{array}{c} C)\left(-\frac{\pi}{2},0\right) \\ D)\left(-\pi,-\frac{\pi}{2}\right) \end{array} $	
$E)\left(0,\frac{\pi}{2}\right)$	

The graph of the function $f(x) = -3\sin\left(\frac{\pi}{2} - 2x\right)$, $\frac{\pi}{4} \le x \le \frac{5\pi}{4}$ is below the x - axis	
on	
A) $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$	Trigonometric
$B)\left(\frac{\pi}{2},\pi\right)$	Graphs $(\sin \theta)$.
C) $\left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$	(31110).
$D)\left(\frac{\pi}{4},\pi\right)$	
$E)\left(\frac{\pi}{4},\frac{\pi}{2}\right)$	
The range of the function $f(x) = 1 + \sqrt{4 - 4\sin^2 x}$, is	
A) [1,5]	Trigonometric
B) [0,2]	Graphs ($\sin \theta$).
C) [-1,3]	(3111 0).
D) [1,3]	
E) [-3,5]	
If the range of the function $y = K - 5\sin\left(\frac{\pi}{2}x - \frac{\pi}{2}\right)$ is $[-7,3]$, then $K =$	
A) -2	Trigonometric
B) $\pi + 2$	Graphs
C) 0	$(\sin \theta)$.
D) 4	
E) $2 - \pi$	

The graph of $y = 3\sin \pi x $, with $-1 \le x \le 1$, is increasing on the interval	
A) $\left(-1, -\frac{1}{2}\right) \cup \left(0, \frac{1}{2}\right)$ B) $\left(-\frac{1}{2}, 0\right) \cup \left(\frac{1}{2}, 1\right)$ C) $\left(-1, \frac{1}{2}\right)$ D) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ E) $\left(-\frac{1}{2}, 1\right)$	Trigonometric Graphs ($\sin \theta$).
Which one of the following statements is FALSE about the graph of the function	
$f(x) = -\frac{1}{2}\sin\left(\frac{\pi x}{2}\right), -2 \le x \le 2$?	
A) is increasing on the interval (-1,1). B) has three x-intercepts. C) lies above the x-axis on the interval (-2,0). D) lies below the x-axis on the interval (0,2). E) passes through the origin.	Trigonometric Graphs $(\sin \theta)$.
The graph of the function $f(x) = 2\sin(4x + \pi)$, where $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$,	
A) has three x-intercepts B) has no y-intercept C) is increasing on the interval $\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$ D) is below the x-axis in the interval $\left(-\frac{\pi}{4}, 0\right)$ E) is above the x-axis in the interval $\left(0, \frac{\pi}{4}\right)$	Trigonometric Graphs ($\sin \theta$).

Which one of the following statements is TRUE about the function $f(x) = -1 +$	
$\frac{1}{2}\sin(2x-3\pi)$?	
A) The range of the function is $\left[-\frac{3}{2}, -\frac{1}{2}\right]$	Trigonometric
B) The vertical translation of the graph of the function is $\frac{1}{2}$ unit up	Graphs ($\sin \theta$).
C) The period of the function is 2π	
D) The phase shift of the function is 3π unit to the right	
E) The amplitude of the function is $\frac{3}{2}$	
2	
The graph of $y = \frac{5}{2} - \cos\left[3\left(x - \frac{\pi}{6}\right)\right]$ has:	
2 [(0/]	
A) range $\left[\frac{3}{2}, \frac{7}{2}\right]$	Tuissanamatuis
B) period π	Trigonometric Graphs
C) phase shift $\frac{\pi}{2}$ to the left	$(\cos \theta)$.
D) amplitude 3	
E) y-intercept $-\frac{5}{2}$	
2	
The number of x-intercepts of the graph of $y = -2\cos \pi x$, $-\frac{3}{2} \le x < \frac{5}{2}$. is	
A) 5	Trigonometric
B) 1	Graphs ($\cos \theta$).
C) 3	•
D) 4	
E) 2	

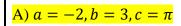
The many of the formation or 2 12 and (2 tr =) in	
The range of the function $y = 2 - 3\cos(3x - \pi) $, is A) [-1,2] B) [-3,0] C) $(-\infty, -3] \cup [0, \infty)$ D) [1,4] E) $(-\infty, 1] \cup [4, \infty)$	Trigonometric Graphs ($\cos \theta$).
If the adjacent figure represents the graph of $y = -2\cos(bx + c)$, then A) $b = \pi$ and $c = \frac{\pi}{2}$ B) $b = \pi$ and $c = -\frac{\pi}{4}$ C) $b = 2\pi$ and $c = \frac{\pi}{4}$ E) $b = \pi$ and $c = \frac{\pi}{4}$	Trigonometric Graphs ($\cos \theta$).
The graph of the function $f(x) = 3\cos(2\pi x)$ over $[-1,1]$ intersects the line $y = -2$ at A) 5 points B) 7 points C) 8 points D) 3 points E) 4 points	Trigonometric Graphs ($\cos \theta$).

The graph of the function $f(x) = -2\cos\left(\frac{\pi}{4}x - \frac{\pi}{2}\right)$, $0 \le \frac{\pi}{4}$	$\le x \le 10$ is increasing on the	
interval		
A \ [2 <]		Trigonometric
A) [2,6]		Graphs
B) [0,4]		$(\cos \theta)$.
C) [0,4] U [8,10]		
D) [8,10]		
E) [3,4] ∪ [9,10]		
If the adjacent figure represents the graph of the function	$n y = a\cos(kx + b), \text{ then } a + b$	
$k + \frac{b}{\pi} =$		
π		
A) 0		Trigonometric
B) 1	x 3n/2 2n 5n/2	Graphs ($\cos \theta$).
C) -1		(0000).
D) $\frac{\pi - 1}{2}$ E) $\frac{\pi^2 - 1}{2}$		
F) $\frac{\pi^2 - 1}{\pi^2 - 1}$		
If the adjacent figure represents the graph of $y = a\cos(x)$	bx) + 1, then $2b - \pi a =$	
y ,		
A) 3π		Trigonometric
B) 2π		Graphs ($\cos \theta$).
C) -2π	2	(030).
D) -3π		

Ε) π

If the graph of the function $f(x) = 2\cos(bx + c)$, $b > 0$ and $-\frac{\pi}{2} \le c \le \frac{\pi}{2}$,	
has period $\frac{2\pi}{3}$ and passes through the point (0,2), then $b+c=$	
A) 2	Trigonometric
A) 3	Graphs
B) 0	$(\cos \theta)$.
C) 4 D) 5	
E) 2	
E) 2	
The range of the function $f(x) = 3 - \cos(x - \pi) $ is	
Δ \ [2 2]	
A) [2,3]	Trigonometric
B) [2,4]	Graphs ($\cos \theta$).
C) [-3,3]	(0000).
D) (2,4)	
E) (2,3)	
Which one of the following statements is FALSE about the function $f(x) =$	
$5\cos\left(3x-\frac{\pi}{4}\right)$?	
4)	
(a) The graph of $f(x)$ has y-intercept at $y = -1$	
(b) The range of $f(x)$ is $[-5,5]$	Trigonometric Graphs
(c) The horizontal shift of the graph of $f(x)$ is $\frac{\pi}{12}$ units to the right	$(\cos \theta)$.
(d) The amplitude of the graph of $f(x)$ is 5	
(c) The period of $f(x)$ is $\frac{2\pi}{3}$	
3	

The graph of the function $f(x) = -2\sin(3x)$ over $[0,2\pi]$ intersects the line $y = \frac{3}{2}$ at	
A) 3 points.	
B) 7 points.	Trigonometric
C) 6 points.	Graphs
D) 2 points.	(sin θ).
E) 5 points	
The equation of the function whose part of its graph is drawn below is	
A) $y = -\cos 4x$	
B) $y = -\sin 3x$	Trigonometric
$C) y = -\sin 2x$	Graphs ($\cos \theta$).
D) $y = \cos 2x$,
E) $y = -\cos 2x$	
If A is the amplitude, P is the period and F is the phase shift of the graph of the	
function $f(x) = -3\cos\left(\frac{\pi x}{5} - 2\pi\right)$, then $\frac{-2A + P - F}{2} =$	
A) $-3 - 10\pi$	Trigonomotric
B) -3	Trigonometric Graphs
C) 3	$(\cos \theta)$.
D) $3 + 10\pi$	
E) $-3 + 10\pi$	
The range R and the period P of the function $y = -\left 3\sin\frac{x}{2}\right $ are given by	
(a) $R = [-3,0], P = 2\pi$	
(b) $R = [-3,3], P = 2\pi$	Trigonometric
(c) $R = [-3,0], P = 4\pi$	Graphs (sin θ).
(d) $R = [-3,0], P = \pi$	
(e) $R = [-3,0], P = \frac{\pi}{2}$	

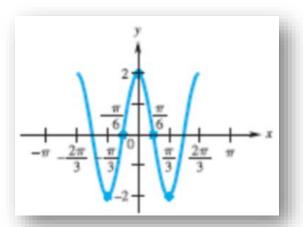

The graph of $y = -\frac{1}{2}\sin \pi x$	
A) has a maximum of $\frac{1}{2}$ in the interval [3,4]	
B) is decreasing on the interval [1,2]	Trigonometric Graphs
C) is increasing on the interval [0,1]	$(\sin \theta)$.
D) has a minimum of $-\frac{1}{2}$ in the interval $[-1,0]$	
E) has a minimum of $-\frac{1}{2}$ in the interval [1,2]	
The number of points of intersection of $y = 1$ and $y = -2\sin\frac{\pi x}{3}$ in the interval	
[-3,9]	
A) 2	Trigonometric
B) 4	Graphs ($\sin \theta$).
C) 5	(= = 7)
D) 3	
E) 6	
Let $f(x) = -\frac{1}{3}\cos(2\pi x)$ and A be its amplitude, P be its period and (a, b) be the	
highest point of the function in the interval [0,1]. Then, $A + P + a - b =$	
$A)\frac{3}{2}$	
	Trigonometric Graphs
B) $\frac{5}{2}$	$(\cos \theta)$.
c) $\frac{3\pi}{2}$	
D) $1 + \frac{3\pi}{2}$	
E) $\frac{5\pi-1}{2}$	

	•
The range of the function $f(x) = -\left 3\sin\frac{2x}{3}\right $ is	
A) [-3,0]	Trigonometric
B) [0,3]	Graphs
C) [-3,3]	$(\sin \theta)$.
D) [-1,0]	
E) [-1,1]	
The function $y = \cos\left(\frac{x}{3} - \frac{\pi}{3}\right)$, for $-\frac{13\pi}{2} \le x \le \frac{17\pi}{2}$ has	
A) three maximum values	
B) two maximum values	Trigonometric Graphs
C) four maximum values	$(\sin \theta)$.
D) five maximum values	
E) six maximum values	
If the adjacent figure represents the graph of the function $y = a\sin(bx + c)$,	
$-\frac{3\pi}{2} \le x \le \frac{5\pi}{2}, \text{ then}$	
4 y	
A) $a = -3, b = \frac{1}{2}, c = \frac{3\pi}{4}$	Trigonometric
B) $a = -3, b = 2, c = -\frac{3\pi}{2}$	Graphs ($\sin \theta$).
C) $a = 3, b = \frac{1}{2}, c = -\frac{3\pi}{4}$	
D) $a = 3, b = 4, c = 3\pi$	
E) $a = -3, b = \frac{1}{4}, c = \frac{3\pi}{8}$	

The graph of the function $y = \frac{1}{2}\cos\frac{\pi}{2}x$ increases over the interval	
A) (2,4) B) (0,2) C) (3,5) D) (1,3) E) (2,5)	Trigonometric Graphs $(\cos \theta)$.
The adjacent figure represents part of the graph of A) $y = \sin\left(\frac{1}{2}x\right) + 1$ B) $y = \cos\left(\frac{1}{2}x\right) + 1$ C) $y = 2\sin(x) + 1$ D) $y = 2\cos(x) + 1$ E) $y = \sin(2x) + 1$	Trigonometric Graphs $(\sin \theta)$.
The graph of $y = - \sin \pi x $ over the interval $\left[\frac{1}{2}, \frac{3}{2}\right]$ intersects the line $y = -\frac{1}{2}$ at: (a) 2 points (b) 1 point (c) 3 points (d) 4 points (e) no point	Trigonometric Graphs ($\sin \theta$).

If the adjacent figure represents the graph of the function $y = a\cos(bx + c), -\frac{2\pi}{3} \le$

$$x \le \frac{2\pi}{3}$$
 then



B)
$$a = 2, b = \frac{1}{3}, c = \pi$$

C)
$$a = -2, b = 3, c = -\frac{2\pi}{3}$$

D)
$$a = -2$$
, $b = \frac{2}{3}$, $c = \frac{2\pi}{3}$

E)
$$a = 2, b = \frac{2}{3}, c = \frac{\pi}{3}$$

Trigonometric Graphs $(\cos \theta)$.

Over the interval $\left[-\frac{\pi}{4}\frac{15\pi}{4}\right]$, the function $y = -\sin\left(\frac{x}{2} + \frac{\pi}{8}\right)$ is decreasing on the interval(s)

A)
$$\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$$
 and $\left[\frac{11\pi}{4}, \frac{15\pi}{4}\right]$

B)
$$\left[\frac{3\pi}{4}, \frac{11\pi}{4}\right]$$

C)
$$\left[-\frac{\pi}{4}, \frac{5\pi}{4}\right]$$
 and $\left[\frac{11\pi}{4}, \frac{15\pi}{4}\right]$

D)
$$\left[0, \frac{3\pi}{4}\right]$$
 and $\left[\frac{5\pi}{4}, \frac{11\pi}{4}\right]$

E)
$$\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$$
 and $\left[\frac{7\pi}{4}, \frac{11\pi}{4}\right]$

Trigonometric Graphs ($\sin \theta$).

	Γ
The function $y = -2 + 5\cos(2x + 3\pi)$ has A) range = $[-7,3]$, phase shift = $\frac{3\pi}{2}$ units to the left B) range = $[-5,5]$ phase shift = 3π units to the left C) range = $[-7,3]$ phase shift = $\frac{3\pi}{2}$ units to the right D) range = $[-2,2]$, phase shift = 3π units to the right E) range = $[-7,7]$, phase shift = $\frac{3\pi}{2}$ units to the left	Trigonometric Graphs ($\cos \theta$).
$y = -2\cos(bx + c), \text{ then}$ A) $b = \frac{\pi}{2} \text{ and } c = \frac{\pi}{2}$ B) $b = \frac{\pi}{2} \text{ and } c = \frac{\pi}{4}$ C) $b = \pi \text{ and } c = +\frac{\pi}{2}$ D) $b = 2n \text{ and } c = -\frac{\pi}{4}$ E) $b = 2\pi \text{ and } c = -\pi$	Trigonometric Graphs ($\cos \theta$).
Which one of the following statements is TRUE? A) The equation $\sin x = 2$ has no solution in the interval $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$. B) Domain of $y = \sin(x + \pi)$ is $[-\pi, \infty)$. C) The period of the graph of $y = \sin[\pi(2x - 1)]$ is π . D) The range of the function $y = 2\sin(x - \pi) - 1$ is $[-2,2]$. E) $(\sec x)(\sin x) = 1$.	Trigonometric Graphs $(\sin \theta)$.

$y = \frac{1}{2}\cos(bx + c), \frac{\pi}{2} \le x \le \frac{9\pi}{2} $ then	
A) $b = \frac{1}{2}, c = -\frac{\pi}{4}$ B) $b = \frac{1}{2}, c = -\frac{\pi}{2}$ C) $b = 2, c = -\frac{\pi}{2}$ D) $b = \frac{1}{4}, c = \frac{\pi}{2}$ E) $b = \frac{1}{4}, c = \frac{\pi}{4}$	Trigonometric Graphs ($\cos \theta$).
The graph of the function $y = 2\sin\frac{1}{4}x$, for $-8\pi \le x \le 8\pi$, has A) two maximum values and five <i>x</i> -intercepts B) three maximum values and four <i>x</i> -intercepts C) four maximum values and three <i>x</i> -intercepts D) five maximum values and two <i>x</i> -intercepts E) three maximum values and three <i>x</i> -intercepts	Trigonometric Graphs ($\sin \theta$).
For $-8 \le x \le 8$, the graph of the function $y = -\frac{3}{2}\sin\left(\frac{\pi}{4}x\right)$ lies below the <i>x</i> -axis in the interval(s) [Hint: Sketch the graph] A) $(-8, -4)$ and $(0, 4)$ B) $(-4, 0)$ and $(4, 8)$ C) $(-6, -2)$ and $(2, 6)$ D) $(-4, 0)$ and $(0, 4)$	Trigonometric Graphs ($\sin \theta$).

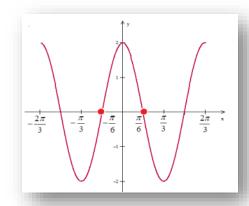
E) (-4,4)

The graph of the function $y = 3\cos($	$(\frac{1}{2}x - \frac{\pi}{4})$, on the interval	$\left[-\frac{7\pi}{2},\frac{9\pi}{2}\right]$ intersects the
line $y = 2$ at		

A) four points

- B) six points
- C) three points
- D) five points
- E) no points

 $y = -2\cos(bx + c), -\frac{2\pi}{3} \le x \le \frac{2\pi}{3} \text{ and } b > 0, \text{ then}$


A)
$$b = 3, c = \pi$$

B)
$$b = \frac{1}{3}, c = \pi$$

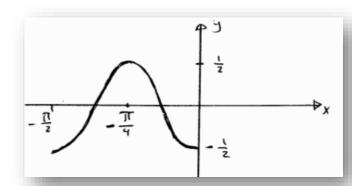
C)
$$b = 3$$
, $c = -\frac{2\pi}{3}$

D)
$$b = \frac{2}{3}$$
, $c = \frac{2\pi}{3}$

E)
$$b = \frac{2}{3}$$
, $c = \frac{\pi}{3}$

Trigonometric Graphs $(\cos \theta)$.

Trigonometric


Graphs

 $(\cos \theta)$.

If the adjacent figure represents the graph of $y = a\cos(bx + c)$ over one period where $0 < c \le 2\pi$ and a < 0, then 8a + b + c =

A) 2π

- B) -2π
- C) $\frac{\pi}{2}$
- D) $-\pi$
- Ε) π

Trigonometric Graphs $(\cos \theta)$.

The graph of $y = -4\sin(2x - \pi)$ is below x -axis on the interval : A) $\left(\frac{\pi}{2}, \pi\right)$ B) $(0, \pi)$ C) $\left(-\pi, -\frac{\pi}{2}\right)$ D) $\left(0, \frac{\pi}{2}\right)$ E) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	Trigonometric Graphs ($\sin \theta$).
The adjacent graph represents a part of the graph of A) $y = \sin\left(x + \frac{\pi}{4}\right)$ B) $y = \sin\left(x - \frac{\pi}{4}\right)$ C) $y = \cos\left(x + \frac{\pi}{4}\right)$ D) $y = 1 - \cos\left(x - \frac{\pi}{4}\right)$ E) $y = -1 - \sin\left(x - \frac{\pi}{4}\right)$	Trigonometric Graphs $(\sin \theta)$.
If $f(x) = a\sin bx$, $b > 0$ has a period of $\frac{2\pi}{3}$ and $f\left(\frac{\pi}{2}\right) = 2$, then a is: A) -2 B) 2 C) 2π D) $-\pi$ E) π	Trigonometric Graphs ($\sin \theta$).

The graph of $y = \frac{5}{2} - \cos\left[3\left(x - \frac{\pi}{6}\right)\right]$ has:	
A) range $\left[\frac{3}{2}, \frac{7}{2}\right]$ B) period π C) phase shift $\frac{\pi}{2}$ to the left. D) amplitude 3 E) y-intercept $-\frac{5}{2}$	Trigonometric Graphs ($\cos \theta$).
The range of the function $f(x) = 2 - \left \cos \left(-\frac{\pi x}{4} \right) \right $ is equal to:	
A) [1, 2] B) [0, 1] C) [2, 3] D) [-1, 0] E) [-2, 0]	Trigonometric Graphs ($\cos \theta$).