6.2: (Trigonometric Functions of Real Numbers)

If
$$\cos \alpha = \frac{12}{13}$$
 and $\frac{3\pi}{2} < \alpha < 2\pi$ then $\frac{\sec \alpha - \tan \alpha}{\sin \alpha} =$

- (A) $-\frac{39}{10}$
- B) $\frac{28}{15}$
- C) $-\frac{18}{5}$
- D) $-\frac{8}{5}$
- E) $\frac{29}{5}$

If
$$\frac{2\sin x\cos(-x)-2\sin(-x)+2\cos(-x)+2}{1+2\cos x+\cos^2 x-\sin^2 x} = \frac{a+b\sin x}{\cos x}$$
, then $a+b=$

- A) 2
- B) -2
- C) 0
- D) 1
- E) -1

If (a, $-\frac{3}{4}$) is a point on a unit circle on the terminal side of an angle θ , in standard position, in quadrant III, then $\cos\theta=$

- A) $-\frac{\sqrt{7}}{4}$
- B) $-\frac{\sqrt{7}}{2}$
- C) $-\frac{a}{4}$
- D) $-\frac{a}{2}$
- E) $-\frac{5}{4}$

If the point (-2,y) lies on the terminal side of an angle θ in standard position, and $\cot\theta=\frac{2}{3}$, then the value of y is

- (A) -3
- (B) $-\frac{5}{3}$
- (C) $-\frac{4}{3}$
- (D) $-\frac{1}{3}$
- (E) -2

If $\theta = 12$ rad, then $\csc \theta =$

A) $-\csc(4\pi - 12)$

- B) $\csc\left(\frac{\pi}{2}-12\right)$
- C) $\csc\left(12 \frac{\pi}{2}\right)$
- D) $\csc\left(12 \frac{7\pi}{3}\right)$
- E) $\csc(4\pi 12)$

If $\tan\theta=-\frac{5}{3}$ and θ is in the second quadrant, then $\frac{\csc\theta-\cot\theta}{\cos\theta}=$

(A)
$$-\frac{34+3\sqrt{34}}{15}$$

- B) $\frac{3+\sqrt{34}}{15}$
- C) $-\frac{\sqrt{34}}{15}$
- D) $\frac{3\sqrt{34}-34}{34}$
- E) $\frac{34}{9} \frac{\sqrt{34}}{5}$

$$\tan\left(-\frac{7\pi}{4}\right) - \sin^2(-135^\circ) =$$

- (A) $\frac{1}{2}$
- B) $\frac{8}{3}$
- C) $2 + \sqrt{3}$
- D) $-\frac{8}{3}$
- E) $-\frac{3}{2}$

$$\tan(-150^\circ) + \csc\left(\frac{5\pi}{3}\right) =$$

- A) $-\frac{\sqrt{3}}{3}$
- B) $\frac{\sqrt{3}}{3}$
- C) $\frac{2\sqrt{3}}{3}$
- D) $2\sqrt{3}$
- E) $-3\sqrt{3}$

$$\sin\left(\frac{2\pi}{3}\right)\cos\left(\frac{5\pi}{6}\right) + \tan\left(\frac{11\pi}{4}\right) =$$

- A) $-\frac{7}{4}$
- B) $\frac{1}{4}$
- C) $-\frac{1}{4}$
- D) $\frac{5}{4}$
- E) $-\frac{5}{4}$

The exact value of $12\csc\left(\frac{35\pi}{3}\right) + \tan\left(-\frac{2\pi}{3}\right)$ is equal to

- A) $-7\sqrt{3}$
- B) $\frac{10\sqrt{3}}{3}$
- C) $-3\sqrt{3}$
- D) $4\sqrt{3}$
- E) $-5\sqrt{3}$

Which ONE of the following statements is IMPOSSIBLE?

A) $\cot^2 \theta - \csc^2 \theta = 1$

B)
$$\tan \theta = \frac{22}{7}$$

C)
$$\cot \theta = -100$$

D)
$$\cos \theta = -\frac{4}{7}$$
 and $\sec \theta = -\frac{7}{4}$

E)
$$\sin \theta = \frac{1}{5}$$
 and $\csc \theta = 5$

If
$$f(x) = \frac{x^2 \sin x}{\sec^3 x}$$
 and $g(x) = \cot x$, then

A) f is an odd function and g is an odd function

- B) f is an even function and g is an even function
- C) f is an even function and g is an odd function
- D) f is an odd function and g is an even function
- E) f is an even function and g is neither an odd nor an even function

Which one of the following is FALSE?

A) $f(x) = |x| \tan(\sin x)$ is an even function

- B) $f(x) = |x| \cot x \sin x$ is an odd function
- C) $f(x) = \csc x \tan x$ is an even function
- D) $f(x) = x^2 \cos x \sin^3 2x$ is an odd function
- E) $f(x) = x^3 + \sec x$ is neither even nor odd function

$$f(x) = 3 + \cos x$$
 and $g(x) = x\sin^2 x$, then

A) f is an even function and g is an odd function.

- B) f is an even function and g is an even function.
- C) f is an odd function and g is an odd function.
- D) f is an odd function and g is an even function.
- E) both functions f and g are neither odd nor even functions.

Which one of the following statements is FALSE?

A) $f(x) = \sin(\cos x)$ is an odd function

- B) If $\sin \theta > 0$ and $\cos \theta < 0$, then θ is in quadrant II
- C) $\csc \pi$ is undefined
- $D) \log_5(\cos 0) = 0$
- E) $f(x) = x \sin x$ is an even function

$$\tan\left(\frac{23\pi}{6}\right) + \csc\left(\frac{11\pi}{6}\right) =$$

A)
$$\frac{-\sqrt{3}-6}{3}$$

B)
$$\frac{-\sqrt{3}+6}{3}$$

C)
$$\frac{-2\sqrt{3}-3}{6}$$

D)
$$\frac{\sqrt{3}+2}{3}$$

E)
$$\frac{\sqrt{3}-2}{3}$$

The value of $\cot\left(-\frac{17\pi}{3}\right) + \sin\left(\frac{11\pi}{6}\right) =$

A)
$$\frac{2\sqrt{3}-3}{6}$$

B)
$$\frac{2\sqrt{3}+1}{3}$$

C)
$$\frac{\sqrt{3}-3}{3}$$

D)
$$\frac{2\sqrt{3}-1}{6}$$

E)
$$\frac{\sqrt{3}+2}{2}$$

$$\sec\left(-\frac{23\pi}{6}\right)\cot\left(\frac{16\pi}{3}\right) =$$

A)
$$\frac{2}{3}$$

B)
$$-\frac{2}{3}$$

D)
$$-\frac{3}{2}$$

$$\sec\left(-\frac{23\pi}{6}\right) + \tan\left(\frac{17\pi}{3}\right) =$$

- A) $\frac{-\sqrt{3}}{3}$
- B) $\frac{\sqrt{3}}{3}$
- C) $-\sqrt{3}$
- D) $\sqrt{3}$
- E) $\frac{5\sqrt{3}}{3}$

In the figure below, if $\sin \alpha = -\frac{4}{5}$, then the value of t is

- <mark>A) -8</mark>
- B) -6
- C) -4
- D) -3
- E) -2

For the angle θ shown in the adjacent diagram, $\csc\theta + \cot\theta$ is equal to

- B) -5
- C) $-\frac{13}{5}$
- D) $-\frac{3}{20}$
- E) -3

Which one of the following statements is FALSE?

(a) If $\tan \theta = \frac{2}{3}$, then $\sin \theta = 2$ and $\cos \theta = 3$

- (b) $f(x) = x\sin^2 x$ is an odd function
- (c) $f(x) = \tan(\cos x)$ is an even function
- (d) $f(x) = \log(\sin x)$ is neither even nor odd function
- (e) $\tan^2 x \sec^2 x = -1$