5.2: (Trigonometry of Right Triangles)

A man stands 123 feet away from the base of a flagpole. He measures the angle of elevation to the top of the flagpole as 30° . If his eyes are 5 feet above the ground, then the height of the flagpole is

A) $5 + 41\sqrt{3}$ ft.

- B) $5 + 123\sqrt{3}$ ft.
- C) $46\sqrt{3}$ ft.
- D) $36\sqrt{3}$ ft
- E) $\frac{123}{2}$ ft

If a student stands at the top of a cliff and looks down at a 60° angle of depression at the base of a tree that is 123 m away from the bottom of the cliff, then the height of the cliff is

A) $123\sqrt{3}$

- B) $41\sqrt{3}$
- C) 123
- D) 41
- E) $123 + 41\sqrt{3}$

A 10 meters ladder is placed against a wall and forms an angle of 45° with the ground. If the foot of the ladder is moved away from the wall the angle changes to 30° . The exact distance moved by the top of the ladder on the wall is

- A) $5\sqrt{3} + 1$
- B) $5(\sqrt{2}-1)$
- C) 5
- D) $3\sqrt{5} 1$
- E) $5\sqrt{2}$

If the angle of elevation from a point 18 feet from the base of a tree to the top of the tree is θ and if $\sin \theta = \frac{4}{5}$, then the height of the tree is

- A) 24 feet
- B) 20 feet
- C) 13.5 feet
- D) 21 feet
- E) 27 feet

If the angle of depression from the top of a television tower to a point on the ground 36 meters from the bottom of the tower is 30° , then the height of the tower is

A) $12\sqrt{3}$ meters

- B) $36\sqrt{3}$ meters
- C) $36\sqrt{2}$ meters
- D) $18\sqrt{2}$ meters
- E) 18 meters

The angle of depression from the top of a building to a point on the ground is 60° . How far is the point from the bottom of the building if the building is 300 meters high?

A) 100√3 m

- B) $300\sqrt{3} \text{ m}$
- C) $600\sqrt{3}$ m
- D) $400\sqrt{3}$ m
- E) 600 m

A 20ft ladder leans against a building so that the angle between the ground and the ladder is θ . If $\cot \theta = \frac{4}{3}$, then the height at which the ladder reaches on the building is

- A) 12ft
- B) 10ft
- C) 5ft
- D) 30ft
- E) 8ft

From a point on the ground $100\sqrt{3}ft$ from the base of a building, an observer finds that the angle of elevation to the top of the building is 30° and that the angle of elevation to the top of a flagpole on top of the building is a, with $\tan a = \frac{21}{20\sqrt{3}}$. Find the length of the flagpole.

- A) 5 feet
- B) 4 feet
- C) 6 feet
- D) 3 feet
- E) 7 feet

From a window 20 feet above the street, the angle of elevation to the top of the building across the street is 60° , and the angle of depression to the base of the building is 20° , the height of the building across the street is:

A) $20(1 + \sqrt{3}\cot 20^{\circ})$

- B) $20\sqrt{3}$ tan 20°
- C) $20(1 + \sqrt{3} \tan 20^{\circ})$
- D) $20\sqrt{3}$ cot 20°
- E) $20\sqrt{3}$

A 20ft ladder leans against a building so that the angle between the ground and the ladder is a. If $\tan \alpha = \frac{1}{2}$, how high does the top of the ladder reach on the building?

A) $4\sqrt{5}$

- B) 10
- C) 4
- D) $8\sqrt{5}$
- E) 8

The angle of depression from the top of a building to the bottom of a tower is 30° and the angle of elevation from the top of the building to the top of the tower is 60° . If the distance between the building and the tower is 60 meters, then the height of the tower in meters is:

A) 80√3

- B) $60(\sqrt{3}+1)$
- C) $30(\sqrt{3}-1)$
- D) $45\sqrt{3}$
- E) 100

A 10 meters ladder is placed against a wall and forms an angle of 30° with the ground. If the foot of the ladder is moved toward the wall, the angle changes to 60° . The exact distance moved by the top of the ladder on the wall is

A) $5(\sqrt{3} - 1)$

- B) $5(\sqrt{3} \sqrt{2})$
- C) $5(\sqrt{2}-1)$
- D) $5\sqrt{2}$
- E) $5\sqrt{3}$

Mohammad wants to find the height of a tree. From a point on the ground he finds that the angle of elevation to the top of the tree is 60° . He then moves back 50 meters from the second point, the angle of elevation to the top of the tree is 45° , the height of the tree is

- A) $75 + 25\sqrt{3}$
- B) $25 + 25\sqrt{3}$
- C) $50 + 25\sqrt{3}$
- D) $50 25\sqrt{3}$
- E) $75 25\sqrt{3}$

A helicopter is flying 450 feet above the ground level. If the angle of depression from the helicopter to the base of a flagpole is θ , where $\sin \theta = \frac{5}{13}$, then the horizontal distance the helicopter must fly to be directly over the flagpole is

- A) 1080 feet
- B) 187.5 feet
- C) 1170 feet
- D) 173.1 feet
- E) 487.5 feet

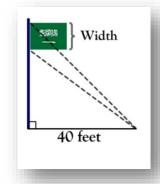
If from the top of a 60 meters tower, an observer finds that the angle of depression to the bottom of a building opposite to the tower is α . where $\sec \alpha = 3$, then the distance in meters between the tower and the building is

A) 15√<mark>2</mark>

- B) $2\sqrt{2}$
- C) $30\sqrt{2}$
- D) $60\sqrt{2}$
- E) $120\sqrt{2}$

The angle of depression from the top of a building to a point on the ground is 30° . How far is the point from the bottom of the building if the building is 252 meters high?

A) $252\sqrt{3}$ m

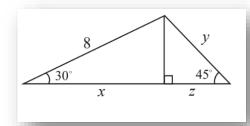

- B) 504 m
- C) $\frac{504\sqrt{3}}{3}$ m
- D) 126 m
- E) $126\sqrt{3} \text{ m}$

If the angle of elevation from a point 12 feet from the base of a building to the top of the building is θ and if $\sec \theta = \frac{5}{4}$, then the height of the building is

- A) 9 feet
- B) 16 feet
- C) $\frac{36}{5}$ feet
- D) 8 feet
- E) $\frac{48}{5}$ feet

Measurements taken 40 feet from the base of a flagpole show the angle of elevation to the top of the flagpole to be 60° and the angle of elevation to the bottom of the flag to be 45° . Determine the vertical width of the flag.

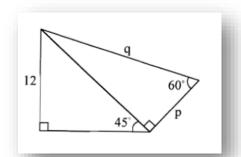
- A) $40(\sqrt{3} 1)$ feet
- B) $6\sqrt{3}$ feet
- C) $\frac{20\sqrt{3}}{3}$ feet
- D) 12 feet
- E) $\frac{40\sqrt{3}}{3}$ feet



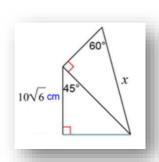
From the top of a tower, a man finds that the angle of depression to a car on the ground is 30° . If the car is 60 meters away from the tower, then the height of the tower in meters is

- A) 80
- B) $80\sqrt{3}$
- C) 20
- D) $20\sqrt{2}$
- E) 20√3

In the adjacent figure, the value of $\frac{x \cdot y}{\sqrt{3}}$ is

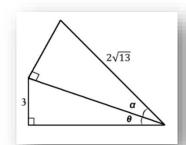

- A) 16√<mark>2</mark>
- B) 32
- C) 36
- D) 24
- E) $24\sqrt{3}$

In the adjacent figure, p+q=

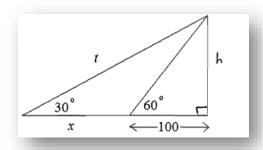

<mark>A) 12√6</mark>

- B) $4\sqrt{6} + 3\sqrt{2}$
- C) $18\sqrt{6}$
- D) $6\sqrt{2} + 4\sqrt{3}$
- E) $15\sqrt{2}$

In the adjacent figure, x =

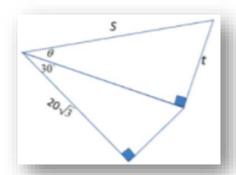

- A) 40 cm
- B) $40\sqrt{3}$ cm
- C) $20\sqrt{3}$ cm
- D) 20 cm
- E) $20\sqrt{6}$ cm

In the following figure, if $\tan \alpha = \frac{2}{3}$, then $\theta =$

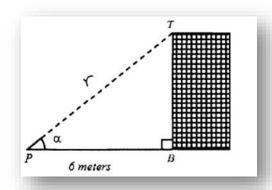

- B) 45°
- C) 15°
- D) 75°
- E) 60°

From the adjacent figure x + t =

A) $200(\sqrt{3}+1)$


- B) 200
- C) $100\sqrt{3}$
- D) $100(\sqrt{3} + 1)$
- E) $100(\sqrt{3}-1)$

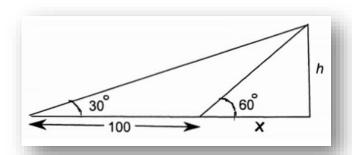
In the figure below, if $\sin \theta = \frac{4}{5}$, then S + t =



- B) $\frac{100\sqrt{3}}{3}$
- C) $80\sqrt{3}$
- D) 100
- E) $\frac{80\sqrt{3}}{3}$

The angle of elevation from a point P that is 6 meters from the base of a building to the top of the building is α . If $\sin \alpha = \frac{4}{5}$ then the height of the building is

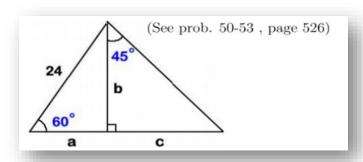
- A) 8 meters
- B) 3 meters
- c) 16 meters
- D) 9 meters
- E) 64 meters



In the adjacent figure $h=% \frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1}{$

(a) 50

(b) $50\sqrt{3}$


- (c) $100(\sqrt{3}-1)$
- (d) $100\sqrt{3}$
- (e) $\frac{50\sqrt{3}}{3}$

The value of $2a + \frac{b}{\sqrt{3}} - \sqrt{3}c$ in the adjacent figure is

<mark>A) 0</mark>

- B) $12\sqrt{3}$
- C) $24\sqrt{3}$
- D) $-12\sqrt{3}$
- E) 12

If $\tan \theta = -\frac{4}{5}$ and $\sin \theta < 0$, then $\sec \theta - \csc \theta =$

A)
$$\frac{9\sqrt{41}}{20}$$

B)
$$-\frac{9\sqrt{41}}{20}$$

C)
$$\frac{\sqrt{41}}{20}$$

D)
$$-\frac{\sqrt{41}}{20}$$

E)
$$\frac{9\sqrt{41}}{41}$$

Let θ be an acute angle satisfying the equation $3\sin\,\theta=4\cos\,\theta$, then $\csc\,\theta=$

- A) $\frac{5}{4}$
- B) $-\frac{1}{5}$
- c) $\frac{5}{12}$
- D) $\frac{1}{5}$

E)
$$-\frac{5}{12}$$

If from the top of a tower $120\sqrt{3}$ feet high, the angles of depression to the top and bottom of a building opposite to the tower are observed to be 30° and 60° respectively, then the height of the building is

- (a) $80\sqrt{3}$ feet
- (b) $60\sqrt{3}$ feet
- (c) $120\sqrt{3}$ feet
- (d) $240\sqrt{3}$ feet
- (e) $40\sqrt{3}$ feet

If the angle of elevation from a point 60 meters from the base of a tower to the top of the tower is θ , where $\sec \theta = \frac{2\sqrt{3}}{3}$. How high must the tower be raised so the angle of elevation from the same point changes to 60° ?

- A) $40\sqrt{3}$
- B) $20\sqrt{3}$
- C) $60\sqrt{3}$
- D) $80(\sqrt{3}-1)$
- E) $20(\sqrt{3}-1)$

In the adjacent figure, if $\alpha = \frac{\pi}{3}$, then the value of x is

- B) $5\sqrt{6}$
- C) $10\sqrt{3}$
- D) $5\sqrt{3}$
- E) $10\sqrt{6}$

