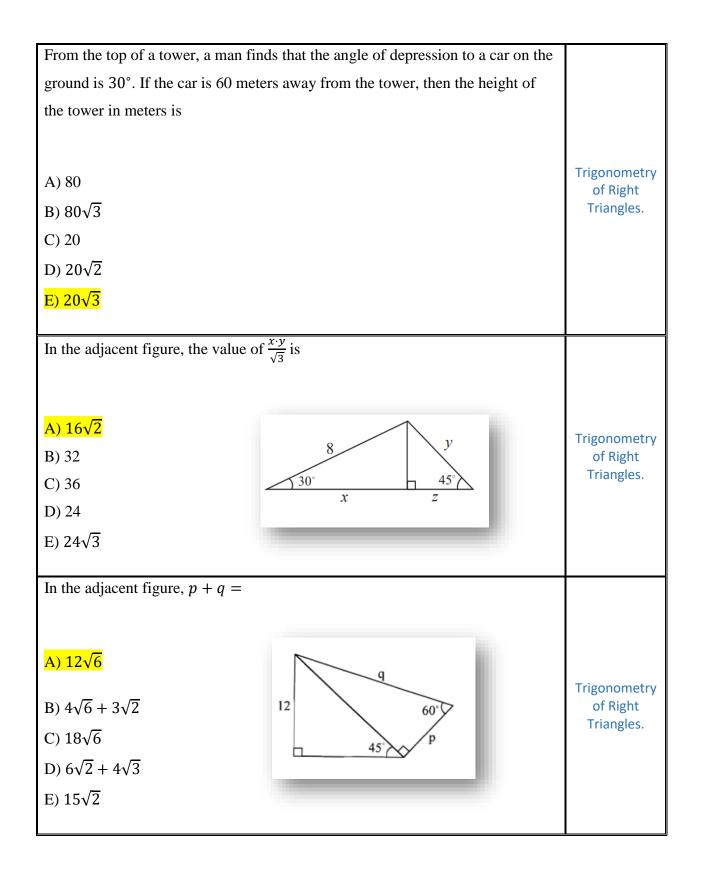
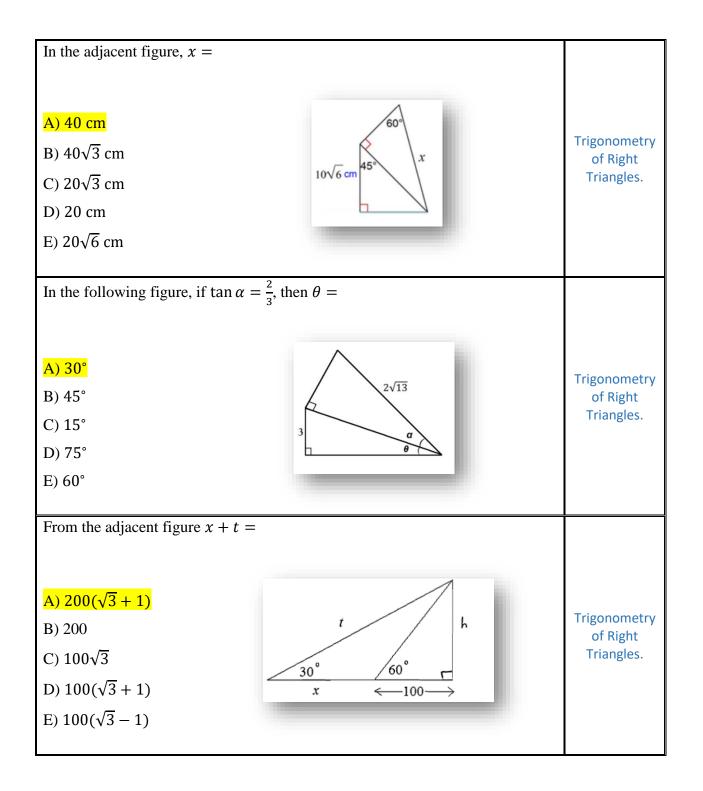
5.2: (Trigonometry of Right Triangles)

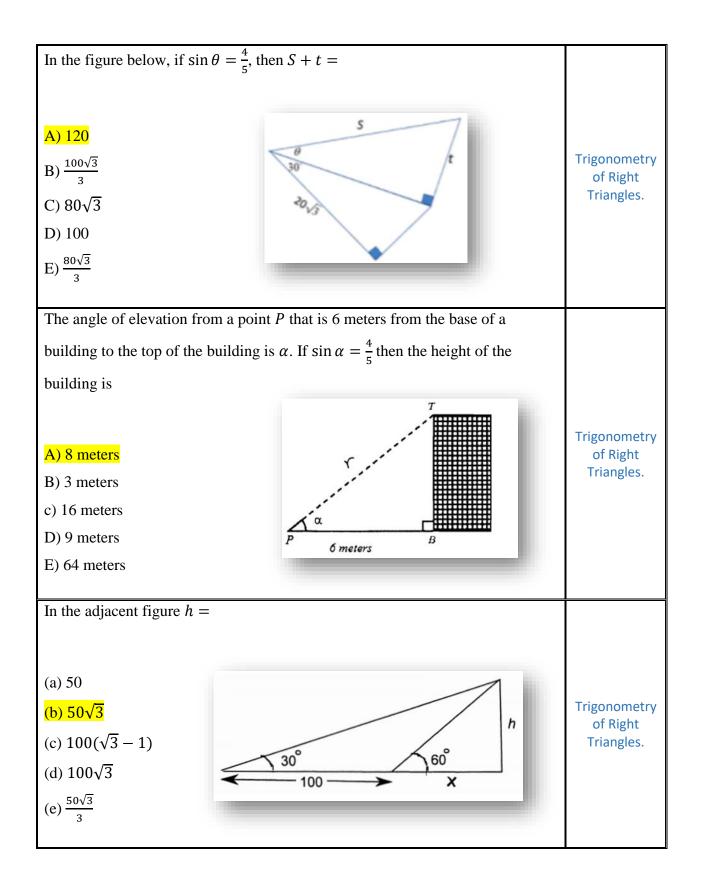
A man stands 123 feet away from the base of a flagpole. He measures the angle	
of elevation to the top of the flagpole as 30° . If his eyes are 5 feet above the	
ground, then the height of the flagpole is	
	Trigonometry
A) $5 + 41\sqrt{3}$ ft.	of Right
B) $5 + 123\sqrt{3}$ ft.	Triangles.
C) $46\sqrt{3}$ ft.	
D) 36√3ft	
E) $\frac{123}{2}$ ft	
2	
If a student stands at the top of a cliff and looks down at a 60° angle of	
depression at the base of a tree that is 123 m away from the bottom of the cliff,	
then the height of the cliff is	
	Trigonometry
A) 123√3	of Right
B) $41\sqrt{3}$	Triangles.
C) 123	
D) 41	
E) $123 + 41\sqrt{3}$	

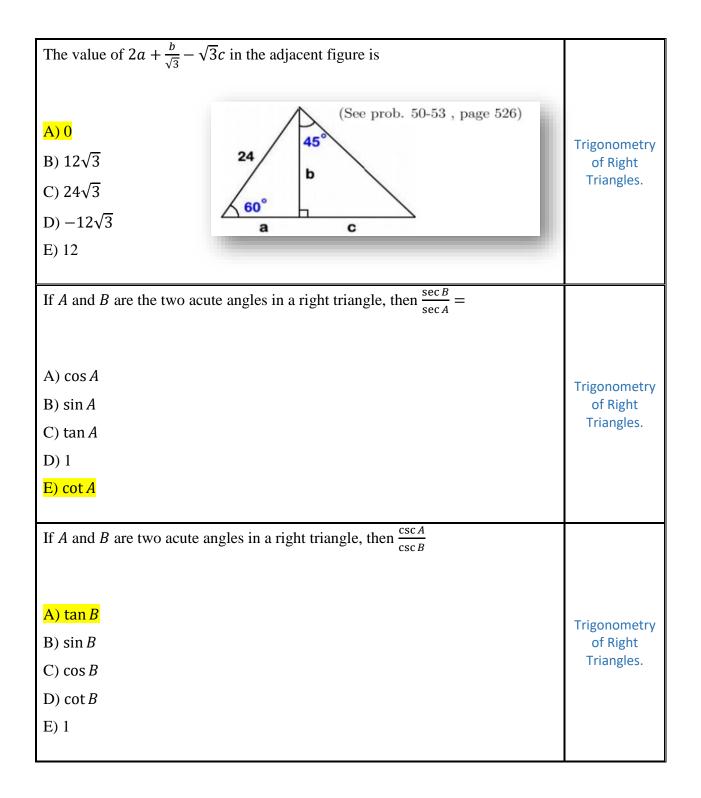
A 10 meters ladder is placed against a wall and forms an angle of 45° with the	
ground. If the foot of the ladder is moved away from the wall the angle changes	
to 30°. The exact distance moved by the top of the ladder on the wall is	
to be . The exact distance moved by the top of the ladder on the wan is	
A) $5\sqrt{3} + 1$	Trigonometry of Right
B) $5(\sqrt{2}-1)$	Triangles.
C) 5	
D) $3\sqrt{5} - 1$	
E) 5 √2	
If the angle of elevation from a point 18 feet from the base of a tree to the top of	
the tree is θ and if $\sin \theta = \frac{4}{5}$, then the height of the tree is	
A) 24 feet	T (1)
B) 20 feet	Trigonometry of Right
C) 13.5 feet	Triangles.
D) 21 feet	
E) 27 feet	
If the angle of depression from the top of a television tower to a point on the	
ground 36 meters from the bottom of the tower is 30°, then the height of the	
tower is	
	Trigonometry
A) $12\sqrt{3}$ meters	of Right
B) $36\sqrt{3}$ meters	Triangles.
C) $36\sqrt{2}$ meters	
D) $18\sqrt{2}$ meters	
E) 18 meters	

The angle of depression from the ten of a building to a point on the ground in	
The angle of depression from the top of a building to a point on the ground is	
60° . How far is the point from the bottom of the building if the building is 300	
meters high?	
<mark>A) 100√3 m</mark>	Trigonometry
B) $300\sqrt{3}$ m	of Right Triangles.
	0.00
C) $600\sqrt{3}$ m	
D) 400√3 m	
E) 600 m	
A 20ft ladder loops against a building on that the angle between the survey long	
A 20ft ladder leans against a building so that the angle between the ground and 4	
the ladder is θ . If $\cot \theta = \frac{4}{3}$, then the height at which the ladder reaches on the	
building is	
N 420	Trigonometry
A) 12ft	of Right Triangles.
B) 10ft	0.00
C) 5ft	
D) 30ft	
E) 8ft	
From a point on the ground $100\sqrt{3}ft$ from the base of a building, an observer	
finds that the angle of elevation to the top of the building is 30 " and that the	
angle of elevation to the top of a flagpole on top of the building is a , with	
$\tan a = \frac{21}{20\sqrt{3}}$. Find the length of the flagpole.	
A) 5 feet	Trigonometry of Right
B) 4 feet	Triangles.
C) 6 feet	
D) 3 feet	
E) 7 feet	


From a window 20 feet above the street, the angle of elevation to the top of the	
building across the street is 60°, and the angle of depression to the base of the	
building is 20°, the height of the building across the street is:	
A) $20(1 + \sqrt{3}\cot 20^{\circ})$	Trigonometry of Right
B) 20√3tan 20°	Triangles.
C) $20(1 + \sqrt{3}\tan 20^{\circ})$	
D) 20√3cot 20°	
E) 20 √3	
A 20ft ladder leans against a building so that the angle between the ground and	
the ladder is a. If $\tan \alpha = \frac{1}{2}$, how high does the top of the ladder reach on the	
building?	
A) $4\sqrt{5}$	Trigonometry of Right
B) 10	Triangles.
C) 4	
D) 8 √5	
E) 8	


The angle of depression from the top of a building to the bottom of a tower is	
30° and the angle of elevation from the top of the building to the top of the	
tower is 60°. If the distance between the building and the tower is 60 meters,	
then the height of the tower in meters is:	
$\sim 00 \sqrt{2}$	Trigonometry of Right
A) $80\sqrt{3}$	Triangles.
B) $60(\sqrt{3}+1)$	
C) $30(\sqrt{3}-1)$	
D) $45\sqrt{3}$	
E) 100	
A 10 meters ladder is placed against a wall and forms an angle of 30° with the	
ground. If the foot of the ladder is moved toward the wall, the angle changes to	
60°. The exact distance moved by the top of the ladder on the wall is	
A) $5(\sqrt{3}-1)$	Trigonometry of Right
B) $5(\sqrt{3} - \sqrt{2})$	Triangles.
C) $5(\sqrt{2}-1)$	
D) $5\sqrt{2}$	
E) $5\sqrt{3}$	
	1


Mohammad wants to find the height of a tree. From a point on the ground he	
finds that the angle of elevation to the top of the tree is 60°. He then moves	
back 50 meters from the second point, the angle of elevation to the top of the	
tree is 45°, the height of the tree is	
	Trigonometry of Right
A) 75 + 25 $\sqrt{3}$	Triangles.
B) $25 + 25\sqrt{3}$	
C) $50 + 25\sqrt{3}$	
D) $50 - 25\sqrt{3}$	
E) $75 - 25\sqrt{3}$	
A helicopter is flying 450 feet above the ground level. If the angle of depression	
from the helicopter to the base of a flagpole is θ , where $\sin \theta = \frac{5}{13}$, then the	
horizontal distance the helicopter must fly to be directly over the flagpole is	
A) 1090 5-11	Trigonometry
A) 1080 feet	of Right Triangles.
B) 187.5 feet	Ŭ
C) 1170 feet	
D) 173.1 feet	
E) 487.5 feet	


If from the top of a 60 meters tower, an observer finds that the angle of	
depression to the bottom of a building opposite to the tower is α . where sec α =	
3, then the distance in meters between the tower and the building is	
	Trigonometry
A) $15\sqrt{2}$	of Right Triangles.
B) $2\sqrt{2}$	mangles.
C) $30\sqrt{2}$	
D) $60\sqrt{2}$	
E) 120√2	
The angle of depression from the top of a building to a point on the ground is 20° . How for is the point from the bottom of the building if the building is 252	
30°. How far is the point from the bottom of the building if the building is 252	
meters high?	
A) 252√3 m	Trigonometry of Right
B) 504 m	Triangles.
C) $\frac{504\sqrt{3}}{3}$ m	
D) 126 m	
E) $126\sqrt{3}$ m	

If the angle of elevation from a point 12 feet from the base of a building to the	
top of the building is θ and if sec $\theta = \frac{5}{4}$, then the height of the building is	
A) 9 feet	Trigonometry of Right
B) 16 feet	Triangles.
C) $\frac{36}{5}$ feet	
D) 8 feet	
E) $\frac{48}{5}$ feet	
Measurements taken 40 feet from the base of a flagpole show the angle of	
elevation to the top of the flagpole to be 60° and the angle of elevation to the	
bottom of the flag to be 45°. Determine the vertical width of the flag.	
A) $40(\sqrt{3}-1)$ feet Width	Trigonometry
B) $6\sqrt{3}$ feet	of Right Triangles.
	mangles.
C) $\frac{20\sqrt{3}}{3}$ feet	
D) 12 feet 40 feet	
E) $\frac{40\sqrt{3}}{3}$ feet	

If the 0 $\frac{4}{3}$ and sin $0 < 0$ then each $0 = 200$	
If $\tan \theta = -\frac{4}{5}$ and $\sin \theta < 0$, then $\sec \theta - \csc \theta =$	
A) $\frac{9\sqrt{41}}{20}$	
B) $-\frac{9\sqrt{41}}{20}$	Trigonometry
	of Right
C) $\frac{\sqrt{41}}{20}$	Triangles.
$D) - \frac{\sqrt{41}}{20}$	
E) $\frac{9\sqrt{41}}{41}$	
41	
Let θ be an acute angle satisfying the equation $3\sin\theta = 4\cos\theta$, then $\csc\theta - $	
$\sec \theta =$	
A) $\frac{5}{4}$	
	Trigonometry
B) $-\frac{1}{5}$	of Right Triangles.
c) $\frac{5}{12}$	mangles.
D) $\frac{1}{5}$	
$E) - \frac{5}{12}$	
12	
If from the top of a tower $120\sqrt{3}$ feet high, the angles of depression to the top	
and bottom of a building opposite to the tower are observed to be 30° and 60°	
respectively, then the height of the building is	
(a) $80\sqrt{3}$ feet	Triconcursts
(b) $60\sqrt{3}$ feet	Trigonometry of Right
	Triangles.
(c) $120\sqrt{3}$ feet	
(d) $240\sqrt{3}$ feet	
(e) $40\sqrt{3}$ feet	