4.4: (Laws of Logarithms)

Which one of the following statements is TRUE?	
$\log_{2a} 16$ 2.6 so $\log_{1a} 1$ $\log_{1a} 1$	
A) $\frac{1}{\log_{2a} 4} = 2$ for any real number $a > 0$, and $a \neq \frac{1}{2}$.	
B) $\log(x + y) = \log x + \log y$ for all positive real numbers x and y.	Laws of
C) $\log(5x) - \log(2x) = \log(3x)$ for all real numbers $x > 0$.	Logarithms.
D) $\log(2x) = 2\log x$ for all real numbers $x > 0$.	
E) $\log x^2 = 2\log x$ for all real numbers x.	
Which one of the following statements is TRUE?	
A) $\ln x > 0$, if $x > 1$	Laws of
B) $\frac{\ln x}{\ln y} = \ln \frac{x}{y}, x > 0, y > 0$	Logarithms.
C) $\ln x^2 = 2 \ln x$, for any real number x	
D) $e^{\ln x} = e^x$	
E) $\ln(x + y) = \ln x + \ln y, x > 0, y > 0$	
Let $a > 1$ and $y > 0$. If $\log_8 a = x + 1$ and $\log_a y = \frac{1}{3}$, then $2^x = \frac{1}{3}$	
A) y	
B) $y - 2$	Laws of
$\frac{C}{2}$	Logarithms.
$\begin{array}{c} D \\ Z \\ E \\ \end{array} \\ v^2 \end{array}$	
If $8 \log_{25} \sqrt[4]{125} + \frac{\ln 2}{\ln 5} - 5^{\log_{25} 9} = \log_5 A$, then $A =$	
A) 5	
B) 2	Laws of
C) 1	Logarithms.
D) 8	
E) 4	
-/·	

$(\sqrt{10})^{2\log 2} + \log_{\frac{2}{5}} \left(\frac{4}{25}\right) =$	
A) 4	
B) $\frac{1}{4}$	Laws of
C) 6	Logarithms.
D) 8	
E) 2	
The <i>x</i> -intercept of the graph of the function $f(x) = e^{2\ln 3} + \ln e^{(\ln x - \ln 4)}$ is	
A) $4e^{-9}$	
B) $9e^{-4}$	Laws of
C) $-4e^{-9}$	Logarithms.
D) $4e^{9}$	
E) -8ln 3	
If $\log_3(x+1) = \frac{1}{2}$, then $\log_3(3x^2 + 6x + 3) =$	
$\frac{A}{2}$	
$\left \begin{array}{c} B \right _{\frac{1}{2}} \\ C \right _{\frac{1}{2}} \\ \end{array} \right _{\frac{1}{2}}$	Laws of
$D)\frac{7}{2}$	Logarithms.
$E)\frac{5}{2}$	
If $\log_3(5) = y$, then $\log_5(9) =$	
$A)\frac{2}{n}$	
\mathbf{P}	
$D = \frac{D}{y}$	Laws of Logarithms.
C) 3y	
D) 2y	
E) y^2	

$If \frac{1}{x} \log_2(e) = y, \text{ then } \ln 8 =$	
$A) \frac{3}{xy}$ $B) \frac{3y}{x}$ $C) \frac{3x}{y}$ $D) \frac{x}{3y}$ $E) 3xy$	Laws of Logarithms.
Let $x > 1$. If $\log_{0.5}(x - 1) = a$, then $\log_8(2x^2 - 4x + 2)$	
A) $\frac{1+2a}{3}$ B) $\frac{2a-1}{3}$ C) $1-2a$ D) $\frac{1-2a}{3}$ E) $\frac{1-2a}{6}$	Laws of Logarithms.
If x, y and z are positive real numbers, then, $\log_5 x + 4\log_{25} y - 3\log_5 z =$ A) $\log_5 \frac{x^2 y^4}{3z}$ B) $\log_5 \frac{x y^8}{z^6}$ C) $\log_5 \frac{x^2 y^4}{z^3}$ D) $\log_5 \frac{x y^4}{z^6}$ E) $\log_5 \frac{x y^2}{z^3}$	Laws of Logarithms.

$(\log_{\sqrt{2}} 8)(\log_{32} \sqrt[3]{25})(\log_{5^{-2}} 4) =$	
4	
$\frac{A}{5}$	Laws of
$\frac{B}{5} = \frac{1}{5}$	Logaritinis.
$C) -\frac{1}{3}$	
$D) \frac{1}{3}$	
$(1)^{\log 3}$ (8)	
$\left(\frac{1}{10}\right) + \log_{\frac{3}{2}}\left(\frac{1}{27}\right) =$	
$A) - \frac{8}{3}$	
B) 0	Laws of
C) $\frac{10}{3}$	Logarithms.
D) 6	
E) $-\frac{2}{3}$	
If $A = 2^{\log_8 125}$ and $B = (\log_{\sqrt{2}} 9)(\log_3 \sqrt{8})$, then $B + A =$	
A) 11	
B) 1	Laws of
C) 10	Logarithms.
D) 0	
E) 12	

Which one of the following statements is always TRUE for the real numbers $u \ge 0$ $u \ge 0$ $u \ne 1$ and $u \ne 1$?	
$x > 0, y > 0, x \neq 1$ and $y \neq 1$?	
$A)\frac{\ln x}{\ln y} = -\frac{\log_x x}{\log_x \frac{1}{y}}$	
$B) \left(\log_y x \right) (\log_x y) = -1$	Laws of Logarithms.
$C) \left(\log_y x\right)^n = n \log_y x$	
D) $\log_x \frac{1}{y} = \log_y x$	
E) $\log_x(x + y^2) = 1 + 2\log_x y$	
Which one of the following statements is TRUE for all $x > 0, y > 0, b > 0$ and $b \neq 1$?	
A) $\log_b \sqrt{x} = \frac{\ln x}{2\ln b}$	
B) $\log_b(x+y) = \log_b x + \log_b y$	Laws of
C) $(\log_b x)(\log_b y) = \log_b(xy)$	Logantinns.
D) $\log_b\left(\frac{x}{y}\right) = \frac{\log_b x}{\log_b y}, y \neq 1$	
$E)\frac{\log_b x}{\log_b y} = \log_b x - \log_b y, y \neq 1$	
If $\log_3(5) = a$ and $\log_3(2) = b$, then $\log(30) =$	
$\sqrt{2}$	
A) $\frac{2+2a+2b}{b}$	
B) $\frac{2a+2b+2b^2}{b}$	Laws of
C) $\frac{\sqrt{1+a+b}}{b}$	Logarithms.
D) $\frac{2a}{b^2}$	
E) $2 + 2a + 2b$	

If $\log 5 = a$, $\log 3 = b$, then $\log_3(45) =$	
A) $\frac{a+2b}{a}$	
B) $\frac{2a+2b}{b}$	Laws of Logarithms.
$\frac{C}{b}$	
D) $\frac{2a+b}{b}$	
E) $\frac{a+b}{2b}$	
If $\log_6 3 = a$, then $\log_2 108 =$	
$A)\frac{a+2}{1-a}$	
B) $\frac{a-2}{1-a}$	Laws of
C) $\frac{a+3}{1-a}$	Logarithms.
D) $\frac{a-3}{1-a}$	
$E)\frac{a-2}{1+a}$	
If $\log_6 2 = x$, then $\frac{1}{2}\log_2 144 =$	
$A)\frac{x+1}{x}$	
B) <i>x</i> + 1	Laws of
C) $\frac{x}{x-1}$	Logarithms.
D) $\frac{1}{x}$	
E) \sqrt{x}	

If $(a, 0)$ is the x-intercept and $(0, b)$ is the y - intercept of the function $f(x) = \log\left(\frac{1}{2}\right) + \log(20 - 2x)$, then $a + b =$ A) 10 B) 8 C) -8 D) -10	Laws of Logarithms.
E) 12	
If $x > 0$, $x \neq 1$, $y > 0$, $\ln x = u$ and $\ln y = v$, then the expression $\log_x(\sqrt[3]{x}y^4)$ simplifies to A) $\frac{1}{3} + 4\frac{v}{u}$ B) $3 + 4\frac{u}{v}$ C) $\frac{1}{3}u + 4v$ D) $3u + 4v$ E) $\frac{1}{3}u + \frac{4}{3}v$	Laws of Logarithms.
If $\log 2 = t$, then $\log 800 - \log \left(\frac{1}{25}\right) =$ A) $t + 4$ B) $t + 2$ C) $5t + 4$ D) $5t + 2$ E) $2t + 3$	Laws of Logarithms.

The exact value of the expression $\left(\log_{49} \sqrt[3]{7} + \sqrt{\log_{0.5} \frac{1}{16}}\right)$ is equal to	
A) $\frac{13}{6}$ B) $\frac{25}{6}$ C) $\frac{7}{3}$ D) $\frac{7}{2}$ E) $\frac{2}{3}$	Laws of Logarithms.
If the expression $-1 + \log_{16} x^3 y^4 + \log_{\frac{1}{8}} x^4 y^3$ where $x > 0$, $y > 0$, is written	
as a single logarithm with base 2, then it is equal to	
A) $\log_2\left(\frac{1}{2x^{7/12}}\right)$	
B) $\log_2\left(\frac{y}{2x^{5/12}}\right)$	Laws of Logarithms.
C) $\log_2\left(\frac{x^{7/12}}{2y}\right)$	
D) $\log_2(-x^{5/12})$	
E) $\log_2(-x^{5/12}y)$	
The exact value of the expression $(\log_5 \sqrt[4]{25} + \log_{0.01} 1000)$ is equal to	
A) -1 B) $\frac{13}{2}$ C) $-\frac{11}{2}$ D) $-\frac{5}{2}$ E) -2	Laws of Logarithms.

If $\log 2 = x$ then $\log 1600 + \log \frac{1}{5}$ is equal to	
A) $5x - 1$	
B) $3x + 3$	Laws of
C) 3 <i>x</i>	Logarithms.
D) $5x + 1$	
E) $5x - 2$	
The expression $1 + 2\ln x - \frac{\ln(x+1)}{2} + \log_{\sqrt{e}} \sqrt{5}$ can be written as	
A) $\ln\left(\frac{5\mathrm{ex}^2}{\sqrt{x+1}}\right)$	
B) $\ln\left(\frac{\sqrt{5ex^2}}{\sqrt{x+1}}\right)$	Laws of
$C) \ln \left(25x^2\sqrt{x+1} \right)$	Logarithms.
D) $\ln\left(\frac{5x}{\sqrt{x+1}}\right)$	
E) $\ln\left(\frac{5\mathrm{ex}^2}{x+1}\right)$	
If the expression $-1 + 6\log_1(wx) - 4\log_{\sqrt{2}}\left(\frac{1}{w}\right)$ is written as a single	
logarithm with base 2, then it is equal to $\frac{1}{y}$	
A) $\log_2 \frac{3(wx)^2}{2y^4}$	
B) $\log_2 \frac{y^8}{2(wx)^2}$	Laws of
C) $\log_2 \frac{2y^4}{(wx)^2}$	Logarithms.
D) $\log_2 \frac{y^2}{2(wx)^2}$	
E) $\log_1 \frac{2y^2}{(wx)^2}$	

If $\log 2 = a$ and $\log 3 = b$, then $\frac{\log_2 \frac{9}{2}}{\log_2 10}$ in terms of a and b is equal to	
A) $2b - a$ B) $\frac{a+b}{2}$ C) $\frac{2}{ab}$ D) $\frac{ab}{2}$ E) $a - 2b$	Laws of Logarithms.
$log_{\frac{3}{2}}\left(\frac{8}{27}\right) + \sqrt{3}^{\left(\frac{\log 4}{\log 3}\right)} =$ A) 0 B) -1 C) 1 D) 2 E) -2	Laws of Logarithms.
If $\log_3 2 = a$ and $\log_3 5 = b$, then $\log 9$ in terms of a and b is equal to $A) \frac{2}{a+b}$ $B) \frac{1}{a} + \frac{2}{b}$ $C) \frac{ab}{2}$ $D) \frac{a+b}{2}$ $E) \frac{2}{ab}$	Laws of Logarithms.

If $\ln 2 = x$ and $\ln 6 = y$, then $\log_9(12) =$	
$A) \frac{x+y}{2y-2x}$ $B) \frac{x+y}{y+2x}$ $C) \frac{x-y}{2y+2x}$ $D) \frac{x+y}{x-y}$ $E) \frac{x-y}{x+y}$	Laws of Logarithms.
If $x > 0, y > 0$ and $w > 0$, then $\log(y^3w^2) - 3\log(x\sqrt{y}) + 2\log\frac{x}{w} =$ A) $\log\frac{y\sqrt{y}}{x}$ B) $\log\frac{y\sqrt{y}}{w}$ C) $\log\frac{y}{x}$ D) $\log\frac{\sqrt{y}}{x}$ E) $\log\frac{y}{w}$	Laws of Logarithms.
If $m > 0$, the expression $-\frac{2}{3}\log_5(5m^2) + \frac{1}{2}\log_5(25m^2) + \log_5 \sqrt[3]{\frac{m}{5}}$ A) 0 B) 1 C) 5 D) $\frac{5}{m}$ E) $\frac{m}{5}$	Laws of Logarithms.

If $\log 2 = x$ and $\log 6 = y$, then $\log 15 =$	
(A) $y - 2x + 1$	
B) $2y - x + 1$	Laws of
C) $2y - x + 2$	Logarithms.
D) $\frac{y-x}{x}$	
E) $\frac{y+x}{x}$	
If $\ln(4) = x$ and $\ln(5) = y$, then $\log_4\left(\frac{16e^2}{2}\right)$ can be written in terms of x and	
<i>y</i> as:	
$A) \frac{2x+2-3y}{x-y}$ $B) \frac{2x-2-3y}{x-y}$ $C) \frac{2x-2+3y}{x-y}$ $D) \frac{2x+2-3y}{x+y}$ $E) \frac{2x-2-3y}{x+y}$	Laws of Logarithms.
The expression $-\frac{2}{3}\log_7(5m^2) + \frac{1}{2}\log_7(25m^2) + \log_7 \sqrt[4]{25}$ where $m > 0$ is equal to (A) $\log_7 \frac{5^{5/6}}{m^{1/3}}$ B) $-\log_7 m^{1/3}$ C) $-\log_7 m^3$ D) $-\log_7 \frac{5^{1/3}}{m^{56}}$ E) $\log_7 \frac{m^{1/3}}{5^{5/6}}$	Laws of Logarithms.

If $A = (\sqrt[3]{2})^{\log_2 27}$ and $B = (\log_2 81) \cdot (\log_{\sqrt{3}} 16)$, then $B - A =$	
A) 29	
B) -5	Laws of
C) -23	Logarithms.
D) -29	
E) 5	
If $\log 3 = t$ and $\log 2 = x$, then $2 + \log(0.09) + \log 5 =$	
A) $2t - x + 1$	
B) $3t + x$	
C) $3t - x$	Laws of Logarithms.
D) $2t + 1$	
E) $2t + x + 1$	
Which one of the following statements is TRUE?	
A $y = \log y$ y is defined if $y > 1$ $y \neq 2$ and $y > 0$	
A) $y = \log_{(a-1)} x$ is defined if $a > 1, a \neq 2$, and $x > 0$ B) $\log(abc) = (\log a)(\log b)(\log c)$	Laws of
C) $\log(a + b + c) = \log(a) + \log(b) + \log(c)$	Logarithms.
D) $\ln 7 - \ln 2 = \frac{\ln 7}{\ln 2}$	
E) $\ln x^2 = 2\ln x$, for any real number x	
If $A = (\log_5 81)(\log_3 5)(\log_2 \sqrt{a})$ and $B = e^{-\ln(1/4)}$, then $B^A =$	
A) a^4	
B) <i>a</i> ⁸	Laws of
C) a	Logarithms.
D) – <i>a</i>	
E) a^{-1}	

If $\log 0.4 = x$, then $\log_2 20 =$	
A) $\frac{x+3}{x+1}$ B) $x + 1$ C) $\frac{x+1}{2}$ D) $x - 1$ E) $\frac{x+1}{x-1}$	Laws of Logarithms.
If $x > 0$ and $\frac{\log_{\sqrt{5}}(4)}{\log_{25}(x^2)} = 2\log 10$, then $x =$	
A) 4 B) 2 C) 1 D) 2ln 2 E) $\frac{1}{2}$	Laws of Logarithms.
If $A = \frac{\log_{\sqrt{5}} 8}{\log_{25} 100}$, then the value of 10^A is equal to	
(a) 64 (b) -4 (c) 3 (d) 32 (e) 6	Laws of Logarithms.

Which one of the following statements is TRUE?(a) $log(x + \sqrt{x^2 - 1}) = -log(x - \sqrt{x^2 - 1})$ for any $x \ge 1$ (correct)(b) $(log x)^3 = 3log x$ for any x > 1(c) The equation $e^x = -1$ has a real solution(d) f(x) = ln x - ln(x - 2) is defined on $(-\infty, 0) \cup (2, \infty)$ (e) ln(x - 1) < 0 when x < 1