4.1: (Exponential Functions and The Natural Exponential)

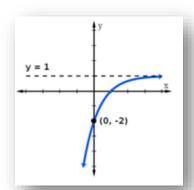
If the two points $(-2, 1)$ and $(2, 81)$ lie on the graph of the exponential function $y = b^{x+c}$, then $b+c=$ A) 3 B) 6 C) 5 D) -2 E) 0	Exponential Functions.
The range of the function $f(x) = 1 + e^{- x-2 }$ is	
A) $(2, \infty)$ B) $(0,2]$ C) $(1, \infty)$ D) $(1,2]$ E) $(-\infty, 2]$	Exponential Functions.
If $f(x) = a^x$ and $f(-1) = \frac{1}{2}$, then $f^{-1}(16) =$ A) 4 B) 2 C) $\frac{1}{4}$ D) 8 E) -2	Exponential Functions.

If $f(x) = a^{2x-3}$ and $f\left(\frac{1}{2}\right) = \frac{1}{4}$, then $f^{-1}(32) =$	
A) 2	
B) 4	Exponential
C) -2	Functions.
D) -4	
E) $\frac{5}{2}$	
$(1)^{x-1}$	
The range of the function $f(x) = 2 - \left(\frac{1}{3}\right)^{x-1}$ is	
A) $(2, \infty)$	
B) (−3,∞)	Exponential
C) (-∞,2)	Functions.
D) $(-\infty,0)$	
E) $(-\infty,3)$	
If $f(x) = -\left(\frac{1}{3}\right)^{x+2} + 3$, then $f^{-1}(2)$ is equal to:	
(a) -2	
(b) 1	Exponential Functions.
(c) 3	runctions.
(d) 0	
(e) -1	
If $f(x) = 2 + e^{(x-3)}$, then the domain of f^{-1} is	
A) (3,∞)	
B) (2,∞)	Evnonontial
C) (-∞,2)	Exponential Functions.
D) [2, ∞)	
E) $(-\infty,3)$	

z (4) ahv za (-14) a + (-14) a	I
Let $f(x) = a - 2^{bx}$, If $f^{-1}(0) = 0$ and $f^{-1}(-3) = -1$, then $a + b = -1$	
A) -1	
B) 0	Inverse of
C) -2	exponential functions.
D) 1	Turictions.
E) 2	
2-x	
If $f(x) = -\left(\frac{1}{2}\right)^{2-x} + 2$, then the domain of the inverse function f^{-1} is	
A) $(-\infty, 2)$	Exponential
B) [2, ∞)	Functions (Range of <i>f</i>
$C)(-\infty,\infty)$	is Domain
D) (2, ∞)	of f^{-1}).
E) $(-\infty, 2]$	
The graph of $f(x) = 1 - 2^{x+1}$ is below the <i>x</i> -axis on the interval	
$A) (-1, \infty)$	
B) (1,∞)	Exponential
$(C)(-\infty,\infty)$	Functions.
D) $(-\infty, -1)$	
E) $(-\infty, 1)$	
2-7	
The graph of the function $y = 1 - \left(\frac{1}{2}\right)^{2-x}$ lies below the x-axis on the interval	
A) (2,∞)	
B) $(-\infty, 2)$	Exponential
$C)$ $(-\infty,1)$	Functions.
D) (1, ∞)	
E) (1,2)	

If the function $f(x) = 2^{(ax+b)} + c$ represents the graph below, then a + b + c =A) -2 B) -1 Exponential Functions. C) 0D) 2 E) 1 The equation of the adjacent graph is A) $y = -3^{1-x} - 1$ B) $y = -3^{x+1} - 1$ C) $y = 3^{x-1} - 1$ D) $y = -\left(\frac{1}{3}\right)^{1-x} - 1$ Exponential Functions. E) $y = 3^{1+x} - 1$ If $y = -\left(\frac{1}{2}\right)^{ax+b} + 3$ is the function of the graph below, then a + b =Exponential A) -3 Functions. B) -1 C) 1 D) 2 E) -2If $f(x) = a^x$ is an exponential function and $f^{-1}\left(\frac{1}{9}\right) = -2$, then f(4) =A) 81 B) 27 Exponential C) 16 Functions. D) $\frac{1}{3}$ E) $\frac{1}{16}$

The equation of the adjacent graph is


A)
$$y = -\left(\frac{1}{3}\right)^{x-1} + 1$$

B)
$$y = -\left(\frac{1}{3}\right)^{x+1} + 1$$

C)
$$y = -\left(\frac{1}{3}\right)^{x-1} - 1$$

C)
$$y = -\left(\frac{1}{3}\right)^{x-1} - 1$$

D) $y = -\left(\frac{1}{3}\right)^{x+1} - 1$

E)
$$y = -\left(\frac{1}{3}\right)^{1-x} + 1$$

Exponential Functions.

Which one of the following statements is FALSE about the graph of the function f(x) =

A) The x-intercept is -1

- B) The *y*-intercept is $-\frac{26}{3}$
- C) The graph of f increases on the interval $(-\infty, \infty)$
- D) The graph of f has a horizontal asymptote y = -9
- E) The range of f is $(-9, \infty)$

If $f(x) = a^x$ and the graph of f passes through the point (-3,64), then $f\left(\frac{5}{2}\right) =$

A)
$$\frac{1}{32}$$

B)
$$\frac{1}{16}$$

- C) -16
- D) -32
- E) $\frac{1}{243}$

Exponential Functions.

Exponential

Functions.

The range of the function $f(x) = 3 + 2^{- x }$ is	
A) (3,4]	
B) [3, ∞)	Exponential
C) $(-\infty, 3]$	Functions.
D) (-3,2]	
E) (0,3)	
If $f(x) = 3^{k-x}$ and $f(-3) = 3$, then $f(2) =$	
1	
$A)\frac{1}{32}$	
B) $\frac{1}{9}$	
C) $\frac{1}{3}$	Exponential Functions.
$D)\frac{1}{81}$	
E) $\frac{1}{27}$	
If $g(x) = \left[\frac{1}{3}\right]^{3-x} - 27$, then which one of the following statements is TRUE?	
A) x-intercept of g is 6.	
B) g is a decreasing function.	Exponential
C) Range of g is $(27, \infty)$	Functions.
D) the line of $y = 27$ is a horizontal asymptote of g .	
E) domain of g is $(3, \infty)$	

If $f(x) = a^x$ and $a \ne 1$ then $f(x+2) = 2f(x+1)$ is a small as	
If $f(x) = a^x$, $a > 0$ and $a \ne 1$, then $\frac{f(x+2)}{f(x+1)} + \frac{2f(x+1)}{f(x)}$ is equal to:	
A) 3a	
B) 2a	Exponential Functions.
C) 3a ^x	Turictions.
D) 3	
E) $3a^{x+1}$	
Which one of the following statements is TRUE about the function $f(x) = \left(\frac{1}{2}\right)^{1-x} - 1$?	
A) The range of f is $(-1, \infty)$.	
B) The x -intercept of f is -1.	Exponential
C) f is decreasing on $(-\infty, \infty)$.	Functions.
D) The domain of f is $(-\infty, 1)$.	
E) The y -intercept of f is -1.	
If $(a, 0)$ is the x-intercept and $(0, b)$ is the y-intercept of the function $f(x) = -2^{-x+2} + 8$, then $b - a =$	
A) 5	Exponential Functions.
B) 0 C) -3	r directions.
D) 3	
E) -4	
If $f(x) = 2^{3-x}$ is written in the form $f(x) = ka^x$, then	
A) $k = 8, a = \frac{1}{2}$	
B) $k = 9$, $a = \frac{1}{2}$	Exponential
C) $k = 2, a = \frac{1}{8}$	Functions.
D) $k = 8, a = -\frac{1}{2}$	
E) $k = 8, a = -2$	

The adjacent figure represents the graph of:	
A) $5 - 3^{-x}$ B) $5 + 3^{-x}$ C) $-3 + 5^{x}$ D) $5 - 3^{x}$ E) $3 + 5^{x}$	Exponential Functions.
Let $f(x) = a^x$ be an exponential function. If $f(5/2) = 4\sqrt{2}$ and $f(-3) = k$ then $a + k =$ (A) $\frac{17}{8}$ B) $\frac{8}{17}$ C) $\frac{17}{2}$ D) $\frac{2}{17}$ E) $\frac{65}{32}$	Exponential Functions.
If $a > 0$, $a \ne 1$, which one of the following statements is TRUE? A) The base of the exponential function $f(x) = a^x$ whose graph contains the point $\left(-4, \frac{1}{16}\right)$ is 2. B) The range of $f(x) = a^x$ is $[0, \infty)$. C) The graph of $f(x) = a^{x+2}$ has $x = 2$ as a vertical asymptote. D) The graph of the exponential function $y = a^x$ is the same as the graph of $y = -\left(\frac{1}{a}\right)^x$. E) The domain of $f(x) = a^x$ is $(0, \infty)$.	Exponential Functions.

If $f(x) = \left(\frac{1}{2}\right)^{1-2x}$, then f(x) can be written as

(a)
$$f(x) = \left(\frac{1}{2}\right) 4^x$$

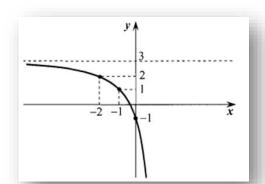
(b)
$$f(x) = \left(\frac{1}{2}\right) 4^{-x}$$

(c)
$$f(x) = \left(\frac{1}{4}\right) 2^x$$

(d)
$$f(x) = \left(\frac{1}{4}\right) 2^{-4}$$

(e)
$$f(x) = \left(\frac{1}{2}\right) 2^x$$

The adjacent graph represents the function


A) $y = -2^{x+2} + 3$

B)
$$y = -2^{2-x} + 3$$

C)
$$y = 2^{-x} - 3$$

D)
$$y = 2^{x+1} - 3$$

E)
$$y = -2^{-x} + 5$$

Exponential Functions.

Exponential Functions.

Which one of the following statements is false about the function $f(x) = -2^{x-1} + 4$?

A) the graph of f has an x-intercept 3 and y-intercept 3

- B) f is a decreasing function over the interval $(-\infty, \infty)$
- C) the range of f is $(-\infty, 4)$
- D) the horizontal asymptote of the graph of f is y = 4
- E) the graph of f is above the x-axis on the interval $(-\infty, 3)$

Exponential Functions.

Let $(a, 0)$ and $(0, b)$ be the x - and y -intercepts of the graph of $y = -4 + \left(\frac{1}{2}\right)^{x-3}$ then $a + b =$	
A) $\frac{11}{4}$ B) 5 C) -3 D) -6 E) 9	Exponential Functions.
Which of the following statements is NOT TRUE about the function $f(x) = -\left(\frac{1}{8}\right)^x$?	
A) f is a one-to-one function.	
B) The graph of f is asymptotic to the negative x -axis.	Exponential
C) The domain of f is $(-\infty, \infty)$.	Functions.
D) The function f is increasing on $(-\infty, \infty)$.	
E) The graph of f passes through the point $(0, -1)$.	
The graph of $y = 2^{4-x} - 4$	
A) is below the x-axis on the interval $(2, \infty)$	
B) is increasing on the interval $(-\infty, \infty)$	Exponential
C) has an x-intercept at (12,0)	Functions.
D) is decreasing on the interval $(0, \infty)$ only	
E) has a horizontal asymptote $y = 0$	

(a) 2-3r	1
If $f(x) = \left(\frac{2}{3}\right)^{2-3x}$ is written as $f(x) = ka^x$, then $8a - 27k =$	
A) 15	
B) 39	Exponential
C) 19	Functions.
D) -15	
E) -19	
Which one of the following statements is true for the function $f(x) = -\left(\frac{1}{5}\right)^{x-3} + 25$?	
A) The range is $(-\infty, 25)$	
B) The x -intercept is -1	Exponential
C) The <i>y</i> -intercept is -10	Functions.
D) The graph of f is decreasing	
E) The graph of f has horizontal asymptote $y = -25$	
If the points (3,4) and (4,16) lie on the graph of $f(x) = b^{x+3c}$, then $f(2) =$	
A) 1	
B) -2	Exponential
C) 6	Functions.
D) 7	
E) -6	

The graph of the function $y = 3\left(\frac{1}{3}\right)^{1-x} - 1$ is below the x-axis on the interval	
A) $(-\infty,0)$	
B) (0,∞)	Exponential
C) $(-\infty, 1)$	Functions.
D) (1,∞)	
E) (0,1)	
The graph of the function $x = 1e^{-x}$ 11 is increasing on the interval	
The graph of the function $y = e^{-x} - 1 $ is increasing on the interval	
$A) (0, \infty)$	
B) $(-\infty,0)$	Exponential
C) (−∞, 1)	Functions.
D) (−1,∞)	
$E(-\infty,\infty)$	
Which one of the following statements is TRUE about $f(x) = 1 - 2^{- x }$?	
A) (1	
A) the range of $f(x)$ is $[0,1)$	
B) the range of $f(x)$ is $(-1,0]$	Exponential Functions.
C) the graph of $f(x)$ is increasing on $(-\infty, 0)$	Taricalons.
D) the graph of $f(x)$ is decreasing on $(0, \infty)$	
E) the line $y = -1$ is an asymptote to the graph of $f(x)$	
If the graph of the function $f(x) = 1 + 2^x - b $, where $b > 0$, has a horizontal asymptote at $y = 3$, then $b + 1 =$	
(a) 3	
(b) 2	Exponential
(c) 4	Functions.
(d) 5	
(e) 1	