3.3: Dividing Polynomials

1. If
$$\frac{8x^4+6x^2-3x+1}{2x^2-x+2} = Q(x) + \frac{ax+b}{2x^2-x+2}$$
, then $a+b=$

- <mark>A) -6</mark>
- B) 7
- C) -8
- D) 5
- E) 3

2. If
$$a+bi$$
 is the remainder when $P(x)=x^{21}-8x^{15}+x^6$ is divided by $x+i$, then $a+b=$

- A) -10
- B) 6
- C) -8
- D) -6
- E) 8

3. Performing the division $\frac{2x^4-3x^2-3x+1}{x^2+x-1}$, the quotient Q(x) and remainder R(x) are:

A)
$$Q(x) = 2x^2 - 2x + 1$$
; $R(x) = -6x + 2$

B)
$$Q(x) = 2x^2 + 2x + 1$$
; $R(x) = 6x + 2$

C)
$$Q(x) = 2x^2 + 2x - 1$$
; $R(x) = 6x - 2$

D)
$$Q(x) = 2x^2 - 2x - 1$$
; $R(x) = -6x - 2$

E)
$$Q(x) = 2x^2 - 2x$$
; $R(x) = -6x$

- 4. If $-x^3 + kx^2 5x 20$ is divided by x + 2, then the set of all values of k which makes the remainder positive is
 - A) $(1/2, \infty)$
 - B) $(11/2, \infty)$
 - C) $(9/2, \infty)$
 - D) $(19/2, \infty)$
 - E) Ø

- 5. If $f(x) = 5x^4 12x^2 + 2x + k$ is divided by x 2, the remainder is 28 , then k =
 - <mark>A) -8</mark>
 - B) -36
 - C) -16
 - D) 8
 - E) 16

- 6. If $x + \frac{1}{2}$ is a factor of the polynomial $p(x) = 10x^4 + 9x^3 4x^2 + (k+3)x + k$, then k =
 - <mark>A) 6</mark>
 - B) -5
 - C) 12
 - D) -3/2
 - E) 5/2

- 7. Given x-i is a factor of the polynomial function $p(x)=8x^5-12x^4+14x^3-13x^2+6x-1$, then the other zeros are
 - A) One nonreal and one rational zero of multiplicity 3
 - B) one nonreal, one rational, and two integer zeros
 - C) one nonreal, one rational, and two irrational zeros
 - D) one nonreal and three integer zeros
 - E) four nonreal zeros

- 8. If $x^{55} 8x + 1$ is divided by x + 1, then the remainder is
 - A) 6
 - B) 10
 - C) -6
 - D) 8
 - E) -8

9. Upon dividing $x^4 + 3x^3 + x^2 - 3x + 15$ by x + 3. we get

- A) quotient = $x^3 + x 6$; remainder = 177
- B) quotient = $x^3 6x 6$; remainder = 33
- C) quotient = $x^3 + x 6$; remainder = 33
- D) quotient = $x^3 x 6$; remainder = $\frac{33}{x+3}$
- E) quotient = $x^3 + x^2 6$; remainder = 33

10.The values of k so that when x^2-3x-8 is divided by x+k, the remainder =-4 is

A) 1, -4

- 11.The value of k for which -3 is a zero of the function $f(x) = -x^4 + 3x^2 4x + k$ is
 - A) 0
 - B) -15
 - C) 42
 - D) 39
 - E) -35

- 12.If 3 is a zero of $f(x) = x^3 x^2 4x 6$, then the other zeros are
 - A) $1 \pm i$
 - B) $1 \pm 2i$
 - C) $-1 \pm 2i$
 - D) $2 \pm i$
 - E) $-1 \pm i$

- 13. If x-2 is a factor of the polynomial x^3-5x^2+7x+k , then k is equal to
 - A) 14
 - B) -2
 - C) 2
 - D) -42
 - E) 42

is the synthetic division of some polynomial p(x) by x-i, then the quotient is equal to

- A) $ix^2 + 1$
- B) $x^2 + 2ix$
- C) $x^2 1$
- D) $x^2 + 2ix + 1$
- E) $ix^2 + 2ix 1$

15.The value of k so that $p(x) = x^4 + kx^3 - 3kx + 9$ is divisible by x - 3 is

- A) 4
- B) -5
- C) 5
- D) -4
- E) 0

16. If x+2 is a factor of the polynomial $p(x)=x^3-kx^2+3x+7k$, then k is equal to:

- A) $\frac{14}{3}$
- B) $\frac{11}{3}$
- C) $\frac{16}{3}$
- D) $\frac{10}{3}$
- E) $\frac{13}{3}$