3.2: Polynomial Functions and their Graphs

1. The graph of $f(x) = -x^3 + 3x^2 + 9x - 27$ lies above the *x*-axis on the interval

A) $(-\infty, -3)$ B) (-3,3)C) $(-\infty, -3) \cup (3, \infty)$ D) $(-\infty, 3)$ E) $(-3, \infty)$

2. If x_1 is the largest real zero of $p(x) = 2x^3 + 7x^2 + 2x - 3$, then the value of $12x_1 + 5$ is equal to

<mark>A) 11</mark>
B) -7/2
C) -9/2
D) 41
E) 17

3. If f(x) is a polynomial of degree 3 with real coefficients and having -3,1,4 and f(2) = 30, then f(x) =

A)
$$-3x^{3} + 6x^{2} + 33x - 36$$

B) $-3x^{3} - 2x^{2} - 11x + 12$
C) $-x^{3} + 2x^{2} + 11x - 12$
D) $x^{3} - 2x^{2} - 11x + 12$
E) $3x^{3} - 6x^{2} - 33x + 36$

4. The far-left and the far-right behavior of the graph of the polynomial $p(x) = -2(x-3)(x+1)^2(2-x)$ is as follows:

A) up to the left and up to the right

- B) up to the left and down to the right
- C) down to the left and up to the right
- D) down to the left and down to the right
- E) none of the above

5. Let $p(x) = x^3(x^2 - 1)(3x - 2)^5(x^2 + 4x + 2)^2$. The number of points where the graph of p(x) crosses the *x*-axis is

<mark>A)</mark>	4
B)	3
C)	5
D)	8

E) 10

6. Which one of the following is true about the graph of the polynomial function $f(x) = x^2(x-3)^3(x+1)$?

A) the graph crosses the *x*-axis at two points

- B) the graph has *y*-intercept at -27
- C) the graph crosses the *x*-axis at three points
- D) the graph lies above the x-axis in the interval (-1,3)
- E) the graph is increasing in the interval $(-\infty, -1]$

7. The set of all x for which the graph of the function $f(x) = -(4 - x)^3(x+3)^2$ is completely above the x-axis on the interval:

A)
$$(4, \infty)$$

B) $(-\infty, -3) \cup (4, \infty)$
C) $(-\infty, \infty)$
D) $(-3, \infty)$
E) $(-\infty, 4)$

8. If $f(x) = -x(x^2 - 4)^2(x^2 + 1)^4$ then the graph of f(x) will intersect but not cross the x - axis at

A) two points

- B) six points
- C) four points
- D) no point
- E) one point

9. By the Intermediate Value Theorem, the polynomial $p(x) = 3x^3 + 7x^2 + 3x + 7$ has at least one zero in the interval

<mark>A) [—3, —2]</mark>
B) [−2,−1]
C) [-1,0]
D) [1,2]
E) [0,1]

10. The graph of the polynomial $p(x) = x^4 - x^3 - 2x^2$ is:

A) tangent to x-axis at x = 0 and is below or on the x-axis on the interval [-1,2)

B) tangent to x-axis at x = 0 and is above or on the x-axis on the interval (-1,2)

C) tangent to x-axis at x = 0 and is below the x-axis on the intervals (-1, 0) and $(2, \infty)$

D) above the x-axis on the intervals (-1,0) and $(2,\infty)$

E) below the x-axis on the intervals $(-\infty, -1)$ and $(0, \infty)$

11. The function $f(x) = -x^3 + x - 3$ has a real zero on

A) [0,1] B) [-2, -1] C) [-1,0] D) [1,2] E) [-1,2]

12. The far-left and the far - right behavior of the graph of the polynomial $p(x) = -2x(x-1)^2(x^2+1)$ is:

A) up to its far left and down to its far right

- B) down to its far left and up to its far right
- C) up to its far left and up to its far right
- D) down to its far left and down to its far right
- E) none of the other answers.

13. The graph of $p(x) = (x - 4)^3(x + 3)^2$ lies above the x-axis on the interval

<mark>A) (4,∞)</mark>

B)
$$(-\infty, -3) \cup (4, \infty)$$

C) $(-\infty, \infty)$
D) $(-3, \infty)$
E) $(-\infty, 4)$