3.1: Quadratic Functions

1. The range of the function $f(x) = -\frac{1}{3}x^2 + 2x + 7$, is

A) $(-\infty, 10]$ B) $(-\infty, 3]$ C) $(-\infty, 7]$ D) $[10, \infty)$ E) $[3, \infty)$

2. Given the function $f(x) = x^2 + 4x + 2$ with domain [-3, -2], then the maximum value of the graph of f(x) is

> A) -1 B) 2 C) 0 D) -2 E) NO maximum value

3. If $-3 \le x \le 0$, then the range of the function $f(x) = (x + 1)^2 + 1$ is equal to

<mark>A) [1,5]</mark>

- B) [2,5]
- C) [1,∞)
- D) [2,∞)
- E) [5,∞)

4. If (2, -1) is the lowest point on the graph of a quadratic function $f(x) = ax^2 - 8x + c$, then a + c =

<mark>A)9</mark>	
B) 0	
C) 1	
D) 11	
E) -2	

5. If the line 2x + 3y = 2 passes through the vertex of the parabola $y = -2x^2 + 4x + c$, then *c* is equal to

<mark>A) -2</mark>
B) -1
C) -3
D) -1/2
E) -1/3

6. If the graph of the quadratic function $f(x) = -2x^2 + 3x + c$ intersects the *x*-axis at two different points, then *c* is any number in the interval

> A) $(-9/8, \infty)$ B) $(-3, \infty)$ C) (-3, -9/8)D) $(-3/2, \infty)$ E) (-3/2, -9/8)

7. A ball is thrown directly upward and the height function is given by the equation $h(t) = -16t^2 + 80t + 32$ where t is time in seconds. The time interval is seconds for which the ball will be more than 96 feet above the ground is

<mark>A) (1,4)</mark>
B) (2,8)
C) (2,5)
D) (3,6)
E) (4,8)

- 8. Which one of the following statements is TRUE about the graph of the function $f(x) = -2x^2 + 2x + 3/2$?
 - A) The graph is decreasing on $[1/2,\infty)$
 - B) The graph has no *x*-intercept
 - C) The vertex is the point (1/2,3/2)
 - D) The range is $(-\infty, 3/2]$
 - E) The axis of symmetry is the line y = 1/2

9. The graph of the function $f(x) = -x^2 + 14x - 47$ is

A) increasing over $(-\infty, 7]$ and has range $(-\infty, 2]$ B) increasing over $(-\infty, 2]$ and has range $(-\infty, 7]$ C) decreasing over $(-\infty, 7]$ and has range $(-\infty, 7]$ D) decreasing over $[7, \infty)$ and has range $(-\infty, \infty)$ E) decreasing over $(-\infty, \infty)$ and has range $(-\infty, 2]$

10. The range of the function $f(x) = -\frac{1}{2}x^2 + 6x + 17$ is

A)
$$[35, \infty)$$

B) $(-\infty, 17]$
C) $(-\infty, 35]$
D) $[17, \infty)$
E) $[-35,0]$

11. If the vertex of the parabola $y = -x^2 + 8x + 2c$ is a point on the x axis, then the value of c is equal to

<mark>A) -8</mark>
B) -32
C) 32
D) 64
E) -64

12. If p and q are two integers such that 3p - q = 18 and the product pq is minimum, then p + q =

A) 6 B) -3 C) -6 D) 3 E) 1

- 13. The maximum of product (3 2x)(x + 2) is
 - A) 45/4
 B) 49/8
 C) 49/4
 D) 6
 E) 4

- 14. The maximum area of a rectangle that has perimeter 1600 meters is equal to
 - A) 160000 square meters
 - B) 240000 square meters
 - C) 20000 square meters
 - D) 40000 square meters
 - E) 80000 square meters

15. The graph of $f(x) = -\frac{1}{2}x^2 + 6x - 16$ is completely above the *x*-axis on the interval

A) [6,8] B) (4,8) C) (4,6) \cup (6,8) D) ($-\infty$, 4) \cup (8, ∞) E) ($-\infty$, 6) \cup (8, ∞)

16. One of the *x*-intercepts of the graph of the function $f(x) = 3x^2 + kx - 4$ is 4. Then the second the *x*-intercept is equal to:

A) 11 B) -11 C) -4 D) $-\frac{1}{3}$ E) $\frac{1}{3}$ 17. If a ball is thrown up in the air and its height b, in meters, is a function of time t, in seconds, given by $h(t) = -16t^2 + 128t + 105$, then the time it will take the ball to reach its maximum height is

<mark>A) 4 seconds</mark>

- B) 1 second
- C) 2 seconds
- D) 8 seconds
- E) 16 seconds

- 18. A ball is thrown vertically upward. If the height b in feet of the ball is given by the equation $h(t) = -16t^2 + 80t + 100$ where time t is in seconds, then the maximum height that the ball attains is
 - <mark>A) 200 feet</mark>
 - B) 150 feet
 - C) 300 feet
 - D) 100 feet
 - E) 250 feet

19. If the sum of two numbers is 106 and their product is maximum, then the difference of these numbers is

A)	10
B)	2
<mark>C)</mark>	<mark>0</mark>
D)	14
E)	53

20. If x = 3 is the axis of symmetry of the parabola $f(x) = -x^2 + 2cx + c^2 + 4$ for some constant c, then the maximum value of f(x) is equal to

A) 18
B) 3
C) 6
D) 13
E) 22

21. If the slope of the line through (2, -3) and the vertex of the parabola $y = (x + m)^2 - 5$ is 3/m, them *m* is

A) -2
B) -5
C) -4
D) -3
<mark>E) -6</mark>

22. The quadratic function $f(x) = -5x^2 - 6x + 2$ has axis of symmetry as

A)
$$x = -\frac{19}{5}$$

B) $y = \frac{19}{5}$
C) $y = -\frac{3}{2}$
D) $x = \frac{3}{4}$
E) $x = -\frac{3}{5}$

23. If the quadratic function $f(x) = ax^2 + bx + c$ has only one *x*-intercept (2,0) and *y*-intercept (0, -8), then a + b + c =

24. If (1, k) is the vertex of the quadratic function $f(x) = -2x^2 + mx + m + 1$, then the range of f is

A) $(-\infty, 4]$ B) $(-\infty, 1]$ C) $[4, \infty)$ D) $[7, \infty)$ E) $(-\infty, 7]$