2.8: (One-to-One Functions and Their Inverses)

If $f^{-1}(x) = \frac{ax+b}{cx+d}$ is the invesre function of $f(x) = \frac{4x+3}{1-x}$ then a+b+c+d=

- A) 3
- B) 9
- C) 5
- D) 2
- E) 7

If $f(x) = 1 - \sqrt{x+2}$ and $f^{-1}(x) = x^2 + ax + b$, $x \le 1$, then a + b = 1

- A) -3
- B) 2
- C) 4
- D) -4
- E) 0

If $f^{-1}(x) = \sqrt{x+a} + b$ is the inverse function of $f(x) = x^2 - 2x$, $x \ge 1$, then a+b=

- A) 2
- B) -2
- c) 0
- D) 1
- E) -1

Which one of the following statements is FALSE?

A) If
$$f = \{(-1,2), (2,1), (5,-1)\}$$
, then $f^{-1} = \{(2,-1), (1,2), (-1,2)\}$.

- B) If f is a one to one function, then g(x) = f(x) + 5 is a one to one function.
- C) If f is a one to one function then f^{-1} is a one to one function.
- D) If $f(x) = x^2$ for all x < 0, then the range of f^{-1} is $(-\infty, 0)$.
- E) If f(x) = x + 1, then the domain of f^{-1} is $(-\infty, \infty)$.

If $f(x) = x^2 - 4x$, $x \ge 2$, then the inverse of f is

A)
$$f^{-1}(x) = 2 - \sqrt{x+4}, x \ge -4$$

B)
$$f^{-1}(x) = 2 + \sqrt{x+4}, x \ge -4$$

C)
$$f^{-1}(x) = 4 + \sqrt{x+2}, x \ge -2$$

D)
$$f^{-1}(x) = 4 - \sqrt{x+2}, x \ge -2$$

E)
$$f^{-1}(x) = 2 + \sqrt{x-4}, x \ge 4$$

Which one of the following statements is FALSE about the function $f(x) = 2 + \sqrt{x}$?

- A) The domain of f is $[0, \infty)$.
- B) The rang of f is $[2, \infty)$.
- C) $f^{-1}(1)$ is undefined.

D)
$$(f^{-1} \circ f)(-4) = -4$$
.

E) The function f is one-to-one.

If $f(x) = \frac{1}{x-1}$, $x \neq 1$, and $f^{-1}(x) = \frac{ax+b}{x}$, then a + b =

- A) 1
- B) -1
- C) 2
- D) 0
- E) -2

If f(x) = ax + b, g(x) = 3x + 2, and $g(x) = 2f^{-1}(x)$, then $a \cdot b$ is equal to:

- A) $-\frac{4}{9}$
- B) $\frac{4}{9}$
- C) 3
- D) 1
- E) -3

If $f(x) = -\sqrt{x+2} + k$, and $f^{-1}(2) = 7$, then $f^{-1}(3) + (f^{-1} \circ f)(2) =$

- A) 4
 B) $\frac{5}{2}$ C) $\frac{11}{5}$ D) 0
- E) 8

If $f(x) = x^2 + 2$; x < 0, then $(f^{-1} \circ f)(-1) + f^{-1}(6) =$

- A) -3
- B) 3
- C) $\sqrt{5}$
- D) $2\sqrt{3}$
- E) 9

If $h(x) = (g \circ f)(x)$ where $f(x) = \frac{3}{x-3}$ and $g(x) = \frac{2}{x}$, then $h^{-1}(x) =$

A)
$$\frac{3}{2}x + 3$$

- B) $\frac{3}{2}x 3$ C) $\frac{3x+2}{3x}$ D) $\frac{3x-2}{3x}$ E) $\frac{3}{x-3}$

Which one of the following statements is FALSE about the inverse functions?

A) If
$$f(2) = -5$$
, then $f(f^{-1}(-5)) = 2$

- B) For a function to have an inverse, it must be a one-to-one function.
- C) If the point (a, b) lies on the graph of f, then (b, a) lies on the graph of f^{-1}
- D) The domain of f is equal to the range of f^{-1}
- E) The graphs of f and f^{-1} are symmetric with respect to the line y = x.

Which one of the following statements is FALSE?

A) The function $f(x) = x^2 + 1$, x < 1, is a one to one function.

B) If
$$f(x) = 2^x$$
 then $f^{-1}(x) = \log_2 x$.

- C) If f(x) = x then $f^{-1}(x) = x$.
- D) f(x) = 5 is NOT a one to one function.
- E) If f is a one to one function, then f^{-1} exists.

If
$$f(x) = \frac{x-3}{x+4}$$
, $x \neq -4$ and $f^{-1}(x) = \frac{ax+b}{cx+1}$, then $a + b + c =$

- A) 6
- B) -6
- C) 0
- D) -8
- E) 8

If $f(x) = \frac{1}{x+2}$, $x \neq -2$, then the graph of $f^{-1}(x)$ lies below the x-axis over the interval

A)
$$(-\infty,0) \cup (1/2,\infty)$$

- B) $(-\infty,0) \cup (0,\infty)$
- C) $(-\infty, -2) \cup (-2, \infty)$
- D) $(-\infty, -2) \cup (0, \infty)$
- E) $(-\infty,0) \cup (2,\infty)$

If $f(x) = -\sqrt{x^2 - 16}$, for $x \ge 4$, then the inverse function is

A)
$$f^{-1}(x) = \sqrt{x^2 + 16}$$
, for $x \le 0$.

B)
$$f^{-1}(x) = \sqrt{x^2 - 16}$$
, for $x \ge 0$.

C)
$$f^{-1}(x) = \sqrt{x-4}$$
, for $x \ge 4$.

D)
$$f^{-1}(x) = \sqrt{x+4}$$
, for $x \ge -4$.

E)
$$f^{-1}(x) = \sqrt{x^2 + 16}$$
, for $-4 \le x \le 4$.

Which one of the following statements is FALSE?

A) If
$$f(x) = x^2$$
, then $f^{-1}(x) = \sqrt{x}$.

- B) The function f(x) = 3, defined over the set of real numbers is not one-to-one.
- C) The range of the function f is equal to the domain of f^{-1} .
- D) An increasing function on its entire domain is one-to-one.
- E) If the point (a, b) lies on the graph of f, then the point (b, a) lies on the graph of f^{-1} .

If
$$f(x) = \frac{2x+1}{x-1}$$
, $x \neq 1$, then $f^{-1}(x)$ equals to

A)
$$\frac{x+1}{x-2}$$
, $x \neq 2$

$$B)\frac{x+1}{x+2}, x \neq -2$$

C)
$$\frac{x-1}{x-2}$$
, $x \neq 2$

D)
$$\frac{x-1}{x+2}$$
, $x \neq -2$

E)
$$\frac{x-1}{2x+1}$$
, $x \neq -\frac{1}{2}$

Which one of the following functions is NOT one - to - one function?

A) f(x) = |x - 1| + 2

B)
$$f(x) = x^3 - 6$$

C)
$$f(x) = x^2 - 4$$
, $0 \le x < \infty$

D)
$$f(x) = 3x - 5$$

$$E) f(x) = -\frac{2}{x+3}$$

If $f^{-1}(x) = -\sqrt{x+9}$, $x \ge -9$, then the graph of f lies below the x-axis on the interval

- A) $[0, \infty)$
- B) (-9,0]
- (-3,0]
- D) $(3, \infty)$
- E) $(-\infty, 0]$

If $f^{-1}(x) = \frac{1}{2} - \sqrt{x + \frac{5}{4'}}$, then $f\left(-\frac{1}{2}\right)$ is equal to

- A) $-\frac{1}{4}$
- B) $-\frac{9}{4}$
- C) $\frac{9}{4}$
- D) $\frac{1-\sqrt{3}}{2}$
- E) $-\frac{5}{4}$

hich one of the following functions is NOT a one-to-one function?

A)
$$f(x) = \sqrt{(x-2)^2}, x \ge 0$$

B)
$$f(x) = 2 - \sqrt{2x - 1}$$

C)
$$f(x) = \frac{1}{x-1} + 3$$

D)
$$f(x) = x^2 - 2x + 1; x \le 1$$

E)
$$f(x) = (x-1)^3$$

Given the function $f(x) = -\sqrt{16 - x^2}$, $0 \le x \le 4$, then the domain of $f^{-1}(x)$ is:

- A) [-4,0]
- B) [-4,4]
- C) [0,4]
- D) [4,∞)
- E) $(-\infty, -4]$

If f(x) = -|x-3| + 2, $x \le 3$, then the domain of the inverse function f^{-1} is

- A) $(-\infty, 2]$
- B) [2,∞)
- C) $[3, \infty)$
- D) $(-\infty, \infty)$
- E) $(-\infty, 3]$

If $f(x) = a^{x+b}$, where $f^{-1}(1) = 4$ and $f^{-1}(3) = 5$, then f(2) = 6

- A) $\frac{1}{9}$
- B) 9
- C) 3
- D) $\frac{1}{3}$
- E) -4