2.8: (One-to-One Functions and Their Inverses)

If $f^{-1}(x) = \frac{ax+b}{cx+d}$ is the invesre function of $f(x) = \frac{4x+3}{1-x}$ then $a+b+c+d=$	
A) 3	
B) 9	1-1 and
C) 5	Inverse Functions.
D) 2	
E) 7	
If $f(x) = 1 - \sqrt{x+2}$ and $f^{-1}(x) = x^2 + ax + b, x \le 1$, then $a + b =$	
A) -3	
B) 2	1-1 and
C) 4	Inverse Functions.
D) -4	
E) 0	
If $f^{-1}(x) = \sqrt{x+a} + b$ is the inverse function of $f(x) = x^2 - 2x, x \ge 1$, then	
a+b=	
A) 2	
B) -2	1-1 and Inverse
C) 0	Functions.
D) 1	
E) -1	
Which one of the following statements is FALSE?	
which one of the following statements is Tribbb.	
A) If $f = \{(-1,2), (2,1), (5,-1)\}$, then $f^{-1} = \{(2,-1), (1,2), (-1,2)\}$.	
B) If f is a one to one function, then $g(x) = f(x) + 5$ is a one to one function.	1-1 and
C) If f is a one to one function then f^{-1} is a one to one function.	Inverse Functions.
D) If $f(x) = x^2$ for all $x < 0$, then the range of f^{-1} is $(-\infty, 0)$.	Turictions.
E) If $f(x) = x + 1$, then the domain of f^{-1} is $(-\infty, \infty)$.	
$(x) = x + 1$, then the domain of $y = 18 (-\infty, \infty)$.	

If $f(x) = x^2 - 4x, x \ge 2$, then the inverse of f is	
1x, x = 2, then the inverse of f	
A) $f^{-1}(x) = 2 - \sqrt{x+4}, x \ge -4$	
B) $f^{-1}(x) = 2 + \sqrt{x+4}, x \ge -4$	1-1 and
C) $f^{-1}(x) = 4 + \sqrt{x+2}, x \ge -2$	Inverse Functions.
D) $f^{-1}(x) = 4 - \sqrt{x+2}, x \ge -2$	
E) $f^{-1}(x) = 2 + \sqrt{x - 4}, x \ge 4$	
Which one of the following statements is FALSE about the function $f(x) = 2 +$	
\sqrt{x} ?	
A) The domain of f is $[0, \infty)$.	
B) The rang of f is $[2, \infty)$.	1-1 and Inverse
C) $f^{-1}(1)$ is undefined.	Functions.
D) $(f^{-1} \circ f)(-4) = -4$.	
E) The function f is one-to- one.	
If $f(x) = \frac{1}{x-1}$, $x \ne 1$, and $f^{-1}(x) = \frac{ax+b}{x}$, then $a + b = 0$	
A) 1	
B) -1	1-1 and
C) 2	Inverse Functions.
D) 0	
E) -2	
If $f(x) = ax + b$, $g(x) = 3x + 2$, and $g(x) = 2f^{-1}(x)$, then $a \cdot b$ is equal to:	
A) $-\frac{4}{9}$	
B) $\frac{4}{9}$	1-1 and Inverse
C) 3	Functions.
D) 1	
E) -3	

If $f(x) = -\sqrt{x+2} + k$, and $f^{-1}(2) = 7$, then $f^{-1}(3) + (f^{-1} \circ f)(2) =$	
A) 4 B) $\frac{5}{2}$ C) $\frac{11}{5}$ D) 0 E) 8	1-1 and Inverse Functions.
If $f(x) = x^2 + 2$; $x < 0$, then $(f^{-1} \circ f)(-1) + f^{-1}(6) =$	
A) -3 B) 3 C) $\sqrt{5}$ D) $2\sqrt{3}$ E) 9	1-1 and Inverse Functions.
If $h(x) = (g \circ f)(x)$ where $f(x) = \frac{3}{x-3}$ and $g(x) = \frac{2}{x}$, then $h^{-1}(x) = \frac{3}{x-3}$ B) $\frac{3}{2}x + 3$ C) $\frac{3x+2}{3x}$ D) $\frac{3x-2}{3x}$ E) $\frac{3}{x-3}$	1-1 and Inverse Functions.
Which one of the following statements is FALSE about the inverse functions? A) If $f(2) = -5$, then $f(f^{-1}(-5)) = 2$ B) For a function to have an inverse, it must be a one-to-one function. C) If the point (a, b) lies on the graph of f , then (b, a) lies on the graph of f^{-1} D) The domain of f is equal to the range of f^{-1} E) The graphs of f and f^{-1} are symmetric with respect to the line $y = x$.	1-1 and Inverse Functions.

Which one of the following statements is FALSE ?	
 A) The function f(x) = x² + 1, x < 1, is a one to one function. B) If f(x) = 2^x then f⁻¹(x) = log₂ x. C) If f(x) = x then f⁻¹(x) = x. D) f(x) = 5 is NOT a one to one function. E) If f is a one to one function, then f⁻¹ exists. 	1-1 and Inverse Functions.
If $f(x) = \frac{x-3}{x+4}$, $x \neq -4$ and $f^{-1}(x) = \frac{ax+b}{cx+1}$, then $a + b + c = \frac{A) \cdot 6}{B} \cdot -6$ C) 0 D) -8 E) 8	1-1 and Inverse Functions.
If $f(x) = \frac{1}{x+2}$, $x \neq -2$, then the graph of $f^{-1}(x)$ lies below the x -axis over the interval A) $(-\infty, 0) \cup (1/2, \infty)$ B) $(-\infty, 0) \cup (0, \infty)$ C) $(-\infty, -2) \cup (-2, \infty)$ D) $(-\infty, -2) \cup (0, \infty)$ E) $(-\infty, 0) \cup (2, \infty)$	1-1 and Inverse Functions.

If $f(x) = -\sqrt{x^2 - 16}$, for $x \ge 4$, then the inverse function is	
A) $f^{-1}(x) = \sqrt{x^2 + 16}$, for $x \le 0$.	
B) $f^{-1}(x) = \sqrt{x^2 - 16}$, for $x \ge 0$.	1-1 and Inverse
C) $f^{-1}(x) = \sqrt{x-4}$, for $x \ge 4$.	Functions.
D) $f^{-1}(x) = \sqrt{x+4}$, for $x \ge -4$.	
E) $f^{-1}(x) = \sqrt{x^2 + 16}$, for $-4 \le x \le 4$.	
Which one of the following statements is FALSE?	
A) If $f(x) = x^2$, then $f^{-1}(x) = \sqrt{x}$.	
B) The function $f(x) = 3$, defined over the set of real numbers is not one-to-one.	1-1 and
C) The range of the function f is equal to the domain of f^{-1} .	Inverse Functions.
D) An increasing function on its entire domain is one-to-one.	Functions.
E) If the point (a, b) lies on the graph of f , then the point (b, a) lies on the graph	
of f^{-1} .	
If $f(x) = \frac{2x+1}{x-1}$, $x \neq 1$, then $f^{-1}(x)$ equals to	
$A)\frac{x+1}{x-2}, x \neq 2$	
$B)\frac{x+1}{x+2}, x \neq -2$	1-1 and
$C)\frac{x-1}{x-2}, x \neq 2$	Inverse Functions.
$D)\frac{x-1}{x+2}, x \neq -2$	
$E)\frac{x-1}{2x+1}, x \neq -\frac{1}{2}$	

Which one of the following functions is NOT one - to - one function?	
A) $f(x) = x - 1 + 2$	
$B) f(x) = x^3 - 6$	1-1 and
C) $f(x) = x^2 - 4$, $0 \le x < \infty$	Inverse Functions.
D) f(x) = 3x - 5	
$E) f(x) = -\frac{2}{x+3}$	
If $f^{-1}(x) = -\sqrt{x+9}$, $x \ge -9$, then the graph of f lies below the x -axis on the interval	
A) $[0,\infty)$	
B) (-9,0]	1-1 and Inverse
C) (-3,0]	Functions.
D) (3,∞)	
E) $(-\infty, 0]$	
If $f^{-1}(x) = \frac{1}{2} - \sqrt{x + \frac{5}{4}}$, then $f\left(-\frac{1}{2}\right)$ is equal to	
A) $-\frac{1}{4}$	
B) $-\frac{9}{4}$	1-1 and Inverse
$C)\frac{9}{4}$	Functions.
$C) \frac{9}{4}$ $D) \frac{1-\sqrt{3}}{2}$	
E) $-\frac{5}{4}$	
*	

Which one of the following functions is NOT a one-to-one function?	
A) $f(x) = \sqrt{(x-2)^2}, x \ge 0$	
B) $f(x) = 2 - \sqrt{2x - 1}$	1-1 and
C) $f(x) = \frac{1}{x-1} + 3$	Inverse Functions.
D) $f(x) = x^2 - 2x + 1; x \le 1$	
E) $f(x) = (x-1)^3$	
Given the function $f(x) = -\sqrt{16 - x^2}$, $0 \le x \le 4$, then the domain of $f^{-1}(x)$	
is:	
A) [-4,0]	1-1 and
B) [-4,4]	Inverse
C) [0,4]	Functions.
D) [4,∞)	
E) $(-\infty, -4]$	
If $f(x) = - x-3 + 2$, $x \le 3$, then the domain of the inverse function f^{-1} is	
A) $(-\infty, 2]$	
B) [2, ∞)	1-1 and
C) [3, ∞)	Inverse Functions.
$D)(-\infty,\infty)$	
E) $(-\infty, 3]$	

If $f(x) = a^{x+b}$, where $f^{-1}(1) = 4$ and $f^{-1}(3) = 5$, then $f(2) = 6$	
A) $\frac{1}{9}$	
B) 9	1-1 and Inverse
C) 3	Functions.
$D)\frac{1}{3}$	
E) -4	