2.6: Transformation of Functions

1. Which one of the following statements is TRUE about the function

$$f(x) = \frac{x|x|}{\sqrt[3]{x}}$$

A) *f* is an even function

- B) f is an odd function
- C) f is neither an odd function, nor an even function
- D) f(-18) = -f(18)
- E) f(0) = 0

2. The domain *D* and the range *R* of the function $f(x) = 2 - \sqrt{6 - 3x}$ are respectively given by

A)
$$D = (-\infty, 2]$$
 and $R = (-\infty, 2]$
B) $D = (-\infty, 2]$ and $R = [2, \infty)$
C) $D = (-\infty, 2]$ and $R = [2, 6]$
D) $D = [2, \infty)$ and $R = [2, \infty)$
E) $D = [2, \infty)$ and $R = (-\infty, 2]$

3. If the graph of the function $f(x) = 1 - \sqrt{x - 1}$ is reflected across the y-axis, then shifted 2 units to the right and 3 units upward, then the equation for the new graph is

A)
$$y = 4 - \sqrt{-x + 1}$$

B) $y = 4 - \sqrt{-x - 1}$
C) $y = 4 - \sqrt{-x - 3}$
D) $y = 4 - \sqrt{-x + 3}$
E) $y = 4 - \sqrt{-x - 2}$

4. Which one of the following is an even function?

A)
$$h(x) = \frac{\sqrt[3]{x}}{x^3 - x}$$

B) $h(x) = x + \frac{1}{x}$
C) $h(x) = 3 - \sqrt[3]{x}$
D) $h(x) = |x| - x$
E) $h(x) = x^2 + x$

5. Which one of the following statements is FALSE ?

A) The function y = |x - 1| is decreasing on $[1, \infty)$ B) The range of the function y = -|x| is $(-\infty, 0]$ C) The graph of a vertical line is not a function D) The domain of the function $y = \sqrt{-x}$ is $(-\infty, 0]$ E) The function $y = x^3$ is increasing on $(-\infty, \infty)$

6. The graph of the equation y = |x + 3| - 2 may be obtained from the graph of y = |x - 1| + 3 by the following translations:

A) Four units to the left and five units down

- B) Four units to the right and two units down
- C) Three units to the left and two units down
- D) Three units to the right and five units down
- E) Two units to the left and one unit down

7. If the graph of $y = x^2 + x + 1$ is shifted left horizontally 2 units and shifted down vertically 7 units, then the equation of the new graph is equal to

A)
$$y = x^{2} + 5x$$

B) $y = x^{2} + 4x$
C) $y = x^{2} - 3x - 4$
D) $y = x^{2} + 4x - 3$
E) $y = x^{2} + 5x - 7$

8. If the graph of $f(x) = \sqrt{x - 1} + 1$ is reflected across the *y*-axis, then shifted left horizontally 5 units and up vertically 3 units, then the equation of the new function g(x) is

A)
$$g(x) = \sqrt{-x - 6} + 4$$

B) $g(x) = -\sqrt{x - 6} + 4$
C) $g(x) = -\sqrt{-x - 6} + 3$
D) $g(x) = \sqrt{-x - 6} + 3$
E) $g(x) = \sqrt{-x - 6} + 2$

9. Let f be a function such that f(-1) = 3 and f(2) = -4. The coordinates of two points on the graph of y = 3f(-x) - 2 are

A) (1,7), (-2, -14)B) (1,1), (-2, -14)C) (1,7), (2,2)D) (1,7), (2,4)E) (-1,1), (2,6)

10. The graph of the equation $y^2 = x^2 + 6x - 2y + 8$ is the graph of $y^2 = x^2$ shifted

A) down vertically 1 unit and left horizontally 3 units

- B) down vertically 2 units and left horizontally 3 units
- C) down vertically 3 units and left horizontally 1 unit
- D) down vertically 1 unit and left horizontally 2 units
- E) up vertically 1 unit and right horizontally 3 units

11. If the graph of the equation $Ax^2 + By^2 + Cx + Dy + E = 0$ is obtained from $2x^2 - 3y^2 = 6$ by means of a horizontal translation of three units to the left and vertically three units upward, then A + B + C + D + E is equal to

> A) 14 B) -14 C) 41 D) -41 E) 0

12. If f(x) is an even function such that f(-3) = 4, then the coordinates of two points that must lie on the graph of y = 3f(2x)are

> A) $(\frac{3}{2}, 12)$ and $(-\frac{3}{2}, 12)$ B) (6, 4/3) and (-6, 4/3)C) $(\frac{3}{2}, 4/3)$ and $(-\frac{3}{2}, 4/3)$ D) (1, 2) and (-1, 2)E) (6, 12) and (-6, 12)

13. Which one of the following statement is TRUE?

A) $f(x) = x^4 - |x^3| + 13$ is an even function

- B) f(x) = 3|x| is an odd function
- C) $f(x) = 2 + 4x + x^2$ is an even function
- D) $f(x) = x^3 5$ is an odd function
- E) $f(x) = \sqrt{7 x^2}$ is neither an even nor odd function

14. Which one of the following statements is TRUE?

- A) f(x) = x|x| is an odd function
- B) f(x) = 5 is an odd function
- C) f(x) = x|x| is an even function
- D) f(x) = 5 is neither odd nor even
- E) $y = x^3$ is an even function

15.Let f(x) be any nonzero function, then $g(x) = \frac{1}{2}[f(x) + f(-x)]$ is

A) odd
B) neither odd nor even
C) both even and odd
D) constant
E) even.

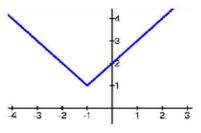
16. The graph of the equation $(x + 1)^2 + (y - 2)^3 = 4$ may be obtained from the graph of $x^2 + y^3 = 4$ by means of the following translations:

A) Two units to the left and one unit up

B) Two units to the right and one unit down

- C) One unit to the right and two units up
- D) One unit to the right and two units down
- E) One unit to the left and two units up

17. If the graph of the equation $x = y^2 + y$ is shifted one unit to the left and two units upward, then the equation of the new graph is


A)
$$x = y^2 - 3y + 3$$

B) $x = y^2 - 3y + 1$
C) $x = y^2 + 5y + 5$
D) $x = y^2 + 2y + 7$
E) $x = y^2 + y$

18. By translating the graph of the equation $(x + 1)^2 + (y - 2)^3 = 1$ two units to the right and two units downward, the equation of the new graph is

A)
$$(x + 3)^{2} + (y - 4)^{3} = 1$$

B) $x^{2} - 2x + y^{3} = 0$
C) $(x - 1)^{2} + (y - 4)^{3} = 1$
D) $x^{2} + y^{3} = 2$
E) $(x + 1)^{2} + (y - 2)^{3} = 5$

19. The adjacent figure is the graph of y = f(x). If E(x) = |x - 1| + 1, then which one of the following is TRUES?

A) f(x) = -E(x)B) f(x) = E(-x)C) f(x) = E(x - 1)D) f(x) = E(x + 1)E) f(x) = E(x/2)

20. If f(2) = -7, then which of the following points must be on the graph of the function h(x) = f(x - 1) + 3

A) (3,4) B) (-2,7) C) (-2,10) D) (3,-4) E) (-1,-10) 21. Which one of the following statement is TRUE ?

A) $f(x) = x^2 - |x|$ is an even function

- B) $f(x) = 4 + \sqrt[3]{x}$ is an even function
- C) f(x) = 5 is an odd function
- D) $f(x) = x^5 + x^3 + 1$ is an odd function
- E) $f(x) = x^2/(x^2 + 1)$ is neither odd nor even function

22. Which of the following equations defines an odd function

A)
$$y = |x^{3}|$$

B) $y = 2x + 1$
C) $y = (6x^{2} + x^{4})/(x^{3} + 2x)$
D) $y = x(\sqrt[3]{x^{5} - x})$
E) $f(x) = \sqrt{4x - x^{3}}/(x^{7} + 1)$

23. The graph of the function $f(x) = \sqrt{-x}$ is reflected across the *y*-axis, shifted 2 units to the right and then 1 unit downward. If the equation of the new graph is $g(x) = \sqrt{x+b} + c$, then b + c =

<mark>A) -3</mark>
B) 2
C) -2
D) -1
E) 3

24. If f(-4) = -2, then the coordinates of the point that lies on the graph of g(x) = -3f(1-x) - 2 is

<mark>A) (5,4)</mark>

B) (-3,4)
C) (5,3)
D) (-3,6)
E) (2,4)

25.Let f be a function such that (1, -2) is a point on the graph of f. If (a, b) is the corresponding point that lies on the graph of g(x) = -f(x-3) + 2, then a + b =

> A) 4 B) 6 <mark>C) 8</mark>

26.Let $f(x) = x^2 - 2x$. If g is obtained from f by reflecting its graph across the y-axis, shifting 1 unit right and then 1 unit upward, then g(x) =

A) <mark>x²</mark>

27. Which ONE of the following is TRUE about the functions f(x) =

x(x+1)(x-1) and $g(x) = x\sqrt[3]{x}$?

A) *f* is odd and *g* is even