2.2 - 2.3: Graphs of Functions

1. The graph of the equation $xy = |x^3 - y|$ is

A) symmetric with respect to the *x*-axis only.

B) symmetric with respect to the x-axis and y-axis.

C) symmetric with respect to the origin only.

2. The range of the function
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \ge 0 \\ \frac{|x|}{x} & \text{if } x < 0' \end{cases}$$

<mark>A) [−1,∞)</mark>

- B) (−∞,1]
- C) (−∞,∞)
- D) $(0,\infty)$
- E) (−1,∞)

3. Which one of the following represent y as a function of x?

A)
$$2|x| + y = 0$$

B) $2x + |y| = 0$
C) $\sqrt{y^2 - x^4} = 0$
D) $x = 1$
E) $x^2 + (y - 1)^2 = 4$

4. If [a, b] is the largest interval on which the function

$$f(x) = \begin{cases} 4 & ; \quad x \le -1 \\ x^2 & ; \quad -1 < x < 1 \text{ is increasing, then } a + b = \\ -x + 5 & ; \quad x \ge 1 \end{cases}$$

A) 1 B) -1 C) 0 D) 2 E) 4 5. The graph of the function $f(x) = \left[\left[\frac{x}{2} - 3 \right] \right]$, lies above the *x*-axis over the interval

A) [8, ∞) B) (−6,6) C) (−3, ∞) D) (0, ∞) E) (6, ∞)

6. The range of
$$f(x) = \begin{cases} |x|+1 & ; & x < 1 \\ -x^2 - 1 & ; & 1 \le x < 2 \\ 3 & ; & x \ge 2 \end{cases}$$

A)
$$(-5, -2] \cup [1, \infty)$$

B) $(-\infty, -2] \cup [1, \infty)$
C) $(-\infty, -1] \cup [1, \infty)$
D) $(-5, -1] \cup (3, \infty)$
E) $(-5, -2] \cup [1, 2) \cup (2, \infty)$

7. If D is the domain of $f(x) = \sqrt{16 - x^2}$ and R is the range of g(x) = [[x + 1]] where [[x]] denotes the greatest integer function of x, then D \cap R =

A)
$$\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$

B) $(-4, 4)$
C) $[-4, 4]$
D) $(-\infty, \infty)$
E) $(-\infty, -4] \cup [4, \infty)$

8. If
$$f(x) = \frac{2}{3}x + 2$$
, then $f(x - 3) =$

A) f(x) - 2

B) f(x) + 2C) f(x) - 3D) f(x) + 3E) f(x) + 2/3 9. In the graph of $f(x) = \begin{cases} |x| - 1 & \text{if } x > -1 \\ x - 1 & \text{if } x \le -1 \end{cases}$ we have

A) one *x*-intercept and one *y*-intercept

- B) one *x*-intercept and two *y*-intercepts
- C) two x-intercepts and one y-intercept
- D) two *x*-intercepts and two *y*-intercepts
- E) two *x*-intercepts only

10.Let f(x) = [x] be the greatest integer function. Then only one of the following statements is TRUE ?

A) y = [x] is not a function by the vertical line test B) $[\pi - 1] = 3$ C) [x] = -3 if $-4 \le x < -3$ D) the range of y = [x - 1] is the set of all integers E) the domain of y = [x - 1] is the set of all integers 11. If f(x) = [1 - 2x], where [] is the greatest integer function, then f(x) = 1 when

A)
$$0 \le x < \frac{1}{2}$$

B) $-\frac{1}{2} < x \le 0$
C) $-\frac{1}{2} \le x < 0$
D) $-1 < x \le 1$
E) $\frac{1}{2} < x \le 1$

12. If
$$f(x) = \begin{cases} 2x & x \le -2 \\ x^2 & -2 < x < 1 \\ 4 - x & x \ge 1 \end{cases}$$
 then $f(x)$ has

A) two *x*-intercepts and onc *y*-intercept.

- B) one x intercept and one y intercept
- C) one *x*-intercept and two *y* intercepts.
- D) two *x* intercepts and two *y*-intercepts.
- E) one *x* intercept only.

13.If f(x) = [3x - 1] where [] is the greatest intger function, then f(x) = 0 when

A)
$$\frac{1}{3} \le x < \frac{2}{3}$$

B) $\frac{1}{3} < x \le 1$
C) $-3 < x \le \frac{1}{3}$
D) $\frac{2}{3} \le x < 1$
E) $-3 \le x < 1$

14. From the adjacent graph, the intervals over which the function is increasing:

15. From the adjacent graph, the function is decreasing on the interval:

16. The graph of
$$f(x) = \begin{cases} 2 & \text{if } x < 0 \\ (x-1)^2 & \text{if } x \ge 0 \end{cases}$$
 is increasing on the interval

<mark>A) (1,∞)</mark>

A) [-2,2]

C) (−∞, 1)

17.If
$$f(x) = \begin{cases} [2x+6]], & \text{if } x \le -1 \\ |3x-4|, & \text{if } -1 \le x \le 2, \\ 3, & \text{if } x > 2 \end{cases}$$

then $f(-\pi) + f(1) + f(4) =$

A) -3
B)
$$-2\pi + 9$$

C) $-2\pi + 10$
D) 3
E) 4

18.Let
$$f(x) = \begin{cases} -x + 1, & \text{if } x \le 0 \\ |x - 1|, & \text{if } 0 < x \le 2. \end{cases}$$
 Then the graph of f is 1, $\text{if } x > 2$

increasing on the interval

A) (2,∞) <mark>B) (1,2)</mark> 19. The range of the function f(x) = 3 - |x - 1| is given by

<mark>A) (−∞,3]</mark>

20. The graph of the function $f(x) = \begin{cases} |x|, & \text{if } x \leq 1; \\ 5, & \text{if } x > 1, \end{cases}$ is increasing on the interval

<mark>A) (0,1)</mark>

B) $(1, \infty)$ C) $(-\infty, 0)$ D) $(-\infty, \infty)$ E) $(0, \infty)$

- 21. The range of the function $f(x) = \begin{cases} x^2 + 1, & \text{if } x \ge 0; \\ x 1, & \text{if } x < 0, \end{cases}$ is
 - A) $(-\infty, -1) \cup [1, \infty)$ B) $(-\infty, 1]$ C) $(-\infty, \infty)$ D) $(1, \infty)$ E) $(-1, \infty)$