12.3: (Hyperbolas)

The equation of one of the asymptotes of the hyperbola with vertices at
$(\pm 2,0)$ and eccentricity $e=2$, is

A)
$$y = -\sqrt{3}x$$

$$B) y = \frac{\sqrt{3}}{3} x$$

C)
$$y = -\frac{\sqrt{3}}{2}x$$

A)
$$y = -\sqrt{3}x$$

B) $y = \frac{\sqrt{3}}{3}x$
C) $y = -\frac{\sqrt{3}}{2}x$
D) $y = \frac{2\sqrt{3}}{3}x$
E) $y = -\frac{1}{2}x$

$$E) y = -\frac{1}{2}x$$

The equation of one of the asymptotes of the hyperbola $9x^2 - 4y^2 - 18x +$

$$24y - 63 = 0$$
, is

A)
$$3x + 2y - 9 = 0$$

B)
$$3x - 2y - 3 = 0$$

C)
$$3x + 2y - 3 = 0$$

D)
$$2x - 3y + 7 = 0$$

E)
$$2x + 3y - 7 = 0$$

The equation of a Hyperbola.

The equation of a Hyperbola.

One of the foci of the hyperbola with vertices at $(9, -2)$ and $(-7, -2)$, and	
eccentricity $e = \frac{5}{4}$, is	
4	
A) $(-9, -2)$	The equation
B) (-4, -2)	of a Hyperbola.
C) (-11,-2)	
D) (6, -2)	
E) (12, -2)	
Let <i>P</i> be any point on the hyperbola $81x^2 + 162x - 4y^2 + 16y + 29 = 0$	
1	
with foci F_1 and F_2 , If PF_1 and PF_2 are respectively the distances from P to	
F_1 and from P to F_2 , then $ PF_2 - PF_1 =$	
A) 8	The equation
B) 3	of a Hyperbola.
$C)\frac{2}{3}$	
$\frac{1}{2}$	
E) 6	
A hyperbola with center (2,7) is passing through the point (4,5) and has one	
asymptote with slope 2 and its tranverse axis is horizontal. Its equation is	
A) $4x^2 - 16x - y^2 + 14y - 45 = 0$	The equation
B) $4x^2 + 16x - y^2 + 14y + 81 = 0$	of a Hyperbola.
C) $4x^2 - 8x - y^2 + 14y - 54 = 0$	
D) $4x^2 - 4x - y^2 + 6y - 144 = 0$	
E) $4y^2 + 8y - x^2 + 14x - 54 = 0$	

The asymptote with positive slope of the hyperbola $x^2 - 25y^2 - 2x -$	
100y - 124 = 0 is	
A) $5y - x + 11 = 0$	The equation
B) $5x - y - 7 = 0$	of a Hyperbola.
C) $5y - x - 7 = 0$	
D) $5x - y + 7 = 0$	
E) $5x - y + 6 = 0$	
The eccentricity of the hyperbola given by $9y^2 - 36x^2 - 4 = 0$ is	
The eccentricity of the hyperbola given by $9y^2 - 36x^2 - 4 = 0$ is	
(a) $\frac{\sqrt{5}}{2}$	
$\frac{(a)\frac{\sqrt{5}}{2}}{(b)\frac{\sqrt{3}}{2}}$	The equation
$(c)\frac{\sqrt{17}}{4}$	of a Hyperbola.
$(d)\frac{1}{2}$	
(e) $\frac{3}{2}$	
The equation of the hyperbola with center $(1, -2)$, one focus at $(-2, -2)$ and	
one vertex at $(-1, -2)$, is	
A) $5(x-1)^2 - 4(y+2)^2 = 20$	The equation
B) $4(y+2)^2 - 5(x-1)^2 = 20$	of a Hyperbola.
C) $4(y-2)^2 - 5(x+1)^2 = 20$	
D) $4(x-1)^2 = 5(y+2)^2 = 20$	
E) $5(x+1)^2 - 4(y-2)^2 = 20$	