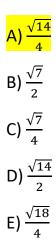
12.2: (Ellipses)

The eccentricity of the ellipse $8(x-3)^2 + (y+1)^2 = 2$, is



The equation of the ellipse with foci (-2,7) and (-2,1) and minor axis of length 8 is

A)
$$\frac{(x+2)^2}{16} + \frac{(y-4)^2}{25} = 1$$

B) $\frac{(x-2)^2}{16} + \frac{(y+4)^2}{25} = 1$
C) $\frac{(x-2)^2}{25} + \frac{(y+4)^2}{16} = 1$
D) $\frac{(x+2)^2}{25}, \frac{(y-4)^2}{16} = 1$
E) $\frac{(x+2)^2}{25} + \frac{(y+4)^2}{16} = 1$

If [a, b] is the domain and [c, d] is the range of the equation $4x = \sqrt{1 - \frac{y^2}{9}}$, then a + b + c + d =

A) $\frac{1}{4}$

B) $-\frac{1}{4}$ C) 0

D) 3

E) -3

The equation of the ellipse in the standard form with vertices (-2,4) and (-2,-2), and passing through (0,1) is

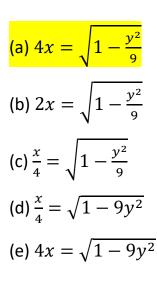
(a)
$$\frac{(x+2)^2}{4} + \frac{(y-1)^2}{9} = 1$$

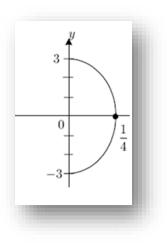
(b) $\frac{(x+2)^2}{4} + \frac{(y-1)^2}{25} = 1$
(c) $\frac{(x-2)^2}{4} + \frac{(y-1)^2}{25} = 1$
(d) $\frac{(x+2)^2}{3} + \frac{(y-2)^2}{12} = 1$
(e) $\frac{(x-2)^2}{4} + \frac{(y+1)^2}{9} = 1$

If (h, k) is the center of the ellipse $25x^2 + 16y^2 - 150x + 64y - 111 = 0$ and e is its eccentricity, then h + k + e is equal to:

A) $\frac{8}{5}$ B) $-\frac{2}{5}$ C) $-\frac{1}{5}$ D) $\frac{3}{5}$ E) $\frac{7}{5}$

The equation, whose graph is shown on the right, is equal to





The length of the major axis of an ellipse with foci at (-1,2) and (3,2) that passes through the point (3,5) is

A) 8 B) 12 C) 4 D) 10 E) 6

An ellipse has its center at (3, -2). If its major axis is borizontal of length 10 and one of the end points of the minor axis is (3,1), then one of its foci is

<mark>A) (7, –2)</mark>
B) (-1,2)
C) (3,2)
D) (-2,3)
E) (3, -6)

The vertices of the ellipse $2x^2 + 3y^2 - 28x + 30y + 167 = 0$ are

A) $(7 + \sqrt{3}, -5)$ and $(7 - \sqrt{3}, -5)$ B) $(-7 + \sqrt{3}, -5)$ and $(-7 - \sqrt{3}, -5)$ C) $(7, -5 + \sqrt{2})$ and $(7, -5 - \sqrt{2})$ D) $(-7, -5 + \sqrt{2})$ and $(-7, -5 - \sqrt{2})$ E) $(7 + \sqrt{3}, 5)$ and $(7 - \sqrt{3}, 5)$