12.2: (Ellípses)

The eccentricity of the ellipse $8(x-3)^2 + (y+1)^2 = 2$, is	
$A) \frac{\sqrt{14}}{4}$ $B) \frac{\sqrt{7}}{2}$	
B) $\frac{\sqrt{7}}{2}$	The equation
C) $\frac{\sqrt{7}}{4}$	of an Ellipse.
$D)\frac{\sqrt{14}}{2}$	
E) $\frac{\sqrt{18}}{4}$	
The equation of the ellipse with foci $(-2,7)$ and $(-2,1)$ and minor axis of	
length 8 is	
A) $\frac{(x+2)^2}{16} + \frac{(y-4)^2}{25} = 1$	
B) $\frac{(x-2)^2}{16} + \frac{(y+4)^2}{25} = 1$	The equation of an Ellipse.
C) $\frac{(x-2)^2}{25} + \frac{(y+4)^2}{16} = 1$	
D) $\frac{(x+2)^2}{25}$, $\frac{(y-4)^2}{16} = 1$	
E) $\frac{(x+2)^2}{25} + \frac{(y+4)^2}{16} = 1$	

If $[a, b]$ is the domain and $[c, d]$ is the range of the equation $4x = \sqrt{1 - \frac{y^2}{9}}$,	
then $a + b + c + d =$	
A) $\frac{1}{4}$	The equation
B) $-\frac{1}{4}$	of an Ellipse.
C) 0	
D) 3	
E) -3	
The equation of the ellipse in the standard form with vertices $(-2,4)$ and	
(-2, -2), and passing through $(0,1)$ is	
(a) $\frac{(x+2)^2}{4} + \frac{(y-1)^2}{9} = 1$	
(b) $\frac{(x+2)^2}{4} + \frac{(y-1)^2}{25} = 1$	The equation of an Ellipse.
$(c)\frac{(x-2)^2}{4} + \frac{(y-1)^2}{25} = 1$	
$(d) \frac{(x+2)^2}{3} + \frac{(y-2)^2}{12} = 1$	
(e) $\frac{(x-2)^2}{4} + \frac{(y+1)^2}{9} = 1$	

If (h, k) is the center of the ellipse $25x^2 + 16y^2 - 150x + 64y - 111 = 0$	
and e is its eccentricity, then $h + k + e$ is equal to:	
A) $\frac{8}{5}$ B) $-\frac{2}{5}$ C) $-\frac{1}{5}$ D) $\frac{3}{5}$ E) $\frac{7}{5}$	The equation of an Ellipse.
The equation, whose graph is shown on the right, is equal to (a) $4x = \sqrt{1 - \frac{y^2}{9}}$ (b) $2x = \sqrt{1 - \frac{y^2}{9}}$ (c) $\frac{x}{4} = \sqrt{1 - \frac{y^2}{9}}$ (d) $\frac{x}{4} = \sqrt{1 - 9y^2}$ (e) $4x = \sqrt{1 - 9y^2}$	The equation of an Ellipse.
The length of the major axis of an ellipse with foci at (-1,2) and (3,2) that passes through the point (3,5) is A) 8 B) 12 C) 4 D) 10 E) 6	The equation of an Ellipse.

An ellipse has its center at $(3, -2)$. If its major axis is borizontal of length 10	
and one of the end points of the minor axis is (3,1), then one of its foci is	
A) (7 - 2)	
A) $(7,-2)$	The equation
B) (-1,2)	of an Ellipse.
C) (3,2)	
D) (-2,3)	
E) $(3, -6)$	
The vertices of the ellipse $2x^2 + 3y^2 - 28x + 30y + 167 = 0$ are	
A) $(7 + \sqrt{3}, -5)$ and $(7 - \sqrt{3}, -5)$	
B) $(-7 + \sqrt{3}, -5)$ and $(-7 - \sqrt{3}, -5)$	The equation of an Ellipse.
C) $(7, -5 + \sqrt{2})$ and $(7, -5 - \sqrt{2})$	or all Lilipse.
D) $(-7, -5 + \sqrt{2})$ and $(-7, -5 - \sqrt{2})$	
E) $(7 + \sqrt{3}, 5)$ and $(7 - \sqrt{3}, 5)$	