12.1: (Parabolas)

The equation of the directrix of the parabola with vertex (1, -2) that has a vertical axis and passes through the point (5,0), is

A) y = -4B) y = -2C) y = -1D) x = -1E) x = 3

The equation of the directrix of the parabola $2y^2 - 8y - 8x = 0$, is

A)	x	=	<mark>-2</mark>
B) .	x	=	0
C) .	x	=	-1
D)	y	=	1
E) (y	=	3

The focus of the parabola $y^2 + 4y + 16x - 12 = 0$, is

A) (-3, -2)B) (-2, -5)C) (-2, -3)D) (1, -2)E) (-5, -2)

A parabola has its focus at (2,5). Its directrix is vertical and passes through (-4,3). Its equation is

A) $y^2 - 10y - 12x + 13 = 0$ B) $(x - 2)^2 = 4(y - 4)$ C) $y^2 - 10y + 12x + 37 = 0$ D) $x^2 - 4x + 4y - 12 = 0$ E) $y^2 - 12y - 10x - 37 - 0$ The equation in the standard form of the parabola that has vertex (1, -1) axis of symmetry parallel to x-axis and passes through the origin is equal to

a)
$$(y + 1)^2 = -(x - 1)$$

b) $(y + 1)^2 = (x - 1)$
c) $(y + 1)^2 = -4(x - 1)$
d) $(x - 1)^2 = -(y - 1)$
e) $(x - 1)^2 = -4(y - 1)$

A parabola has equation $3x^2 + 2mx + 8y = -24$ its vertex is (3, k). Then the value of k is

Λ	۱	3
A	J	8

- B) 3
- C) -9
- D) 24
- E) 1

If the equation of the directrix of the parabola $(3x + 6)^2 = 18y - 36$ is y = mthen m =

A) $\frac{3}{2}$ B) $-\frac{3}{2}$ C) $-\frac{1}{2}$ D) $\frac{5}{2}$ E) 2

The equation of the parabola with focus at (-3,2) and vertex at (-3,-1) is

A) $x^{2} - 12y + 6x - 3 = 0$ B) $y^{2} - 12x + 6y - 3 = 0$ C) $x^{2} + 12y - 6x + 3 = 0$ D) $y^{2} + 12x + 6y - 3 = 0$ E) $x^{2} + 12y + 6v + 3 = 0$ The focus of the parabola given by the equation $2(2y - 4)^2 = 64(x - 1)$ is equal to

- <mark>A) (3,2)</mark>
- B) (3,1)
- C) (2,3)
- D) (4,1)
- E) (1,4)