11.3: (INVERSES OF MATRICES AND MATRIX EQUATIONS)

If A, B and C are $n \times n$ matrices and I_n is the identity matrix of order n then	
which of the following statements is TRUE?	
A) $(A + B)(A^2 - AB + B^2) = A^3 + B^3$	
	Identity
B) $(A + I_n)(A - I_n) = A^2 - I_n^2$	Matrix.
$C) A^2 C = ACA$	
D) $(A - B)^2 = A^2 - 2AB + B^2$	
E) $(A + I_n)^2 = A^2 + I_n$	
[1 3 3]	
If $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$, then the sum of the elements in the first column of A^{-1} is	
equal to	
	Inverse
A) 5	Inverse Matrix.
B) 1	
C) -2	
D) 0	
E) 3	
If $X^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, then the sum of elements in the 3^{rd} column of X is	
A) -1	
B) 0	Inverse
C) $-\frac{1}{2}$	Matrix.
D) $\frac{1}{2}$	
E) $\frac{3}{2}$	

If $A = \begin{bmatrix} 3 & -5 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -4 \\ 4 & -6 \end{bmatrix}$ and $C = A^{-1}B$ then the sum of all elements of	
matrix C is	
A) -6	Inverse
$(B) - \frac{19}{2}$	Matrix.
C) -10	
D) 12	
$E)\frac{9}{2}$	
Given the matrices $M^{-1} = \begin{bmatrix} 2 & 7 \\ 1 & 4 \end{bmatrix}$ and $N^{-1} = \begin{bmatrix} 1 & 2 \\ -2 & -3 \end{bmatrix}$, then the sum of	
elements in the 1^{st} row of $(MN)^{-1}$ is	
A) 19	Inverse
B) -34	Matrix.
C) -22	
D) -11	
E) -3	
If the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & -1 \\ 3 & 6 & -n \end{bmatrix}$ is $A^{-1} = \begin{bmatrix} 0 & 2 & m \\ -1 & -1 & 1 \\ -3 & 0 & 1 \end{bmatrix}$, then the	
sum of m and n is	
	Inverse
A) 1	Matrix.
B) -1	
C) -4	
D) -3	
E) 2	

The system $\begin{cases} 3x - 5y = -18 \\ 2x - 3y = -9 \end{cases}$, has the solution in the form	
a) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 9 & -15 \\ 6 & -9 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$ b) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -8 \\ -9 \end{bmatrix}$ c) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -18 \\ -9 \end{bmatrix}$ d) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -15 & 9 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$ e) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -18 \\ -9 \end{bmatrix}$	Inverse Matrix.
If $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, $BA = \begin{bmatrix} -1 & 2 \\ 4 & 3 \end{bmatrix}$, then the sum of all the elements of matrix B is equal to: A) 1 B) -4 C) 3 D) 2 E) -2	Inverse Matrix.

If $A = \begin{bmatrix} 2 & -5 \\ 3 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 15 \\ 36 \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \end{bmatrix}$, then the matrix solution of the system	
AX = B, is given by	
A) $X = \begin{bmatrix} -6 & 5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 12 \end{bmatrix}$ C) $X = \begin{bmatrix} 2 & -5/3 \\ 1 & -2/3 \end{bmatrix} \begin{bmatrix} -6 \\ 15 \end{bmatrix}$ D) $X = \begin{bmatrix} 2 & 5/3 \\ -1 & -2/3 \end{bmatrix} \begin{bmatrix} 15 \\ 36 \end{bmatrix}$ E) $X = \begin{bmatrix} -2 & 5/3 \\ 1 & -2/3 \end{bmatrix} \begin{bmatrix} 15 \\ 36 \end{bmatrix}$	Inverse Matrix.
The linear system $\begin{bmatrix} 2 & 1 & 1 \\ -1 & 3 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 2 \begin{bmatrix} 9 \\ 5 \\ -11 \end{bmatrix}$ has	
A) infinitely many solutions	Inverse
B) no solution	Matrix.
C) a unique solution $(-3, -12, -4)$	
D) a unique solution (1,2,2)	
E) a unique solution (5,4,4)	
The solution of the system $ \begin{array}{rcl} 3x + 5y & = -10 \\ -2x - 4y & = 6 \end{array} $ can be given by	
A) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \end{bmatrix}$	
$B) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -10 \\ 6 \end{bmatrix}$	Inverse
$C) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -4 & -5 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \end{bmatrix}$	Matrix.
$D) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -10 \\ 6 \end{bmatrix}$	
$E) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \end{bmatrix}$	

 $\begin{bmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 0 \end{bmatrix}$ $\begin{bmatrix} -1\\4\\2 \end{bmatrix}$, then the sum of all the elements in the second row of A^{-1} If A =

is equal to

 $A) - \frac{7}{2}$ $B) \frac{3}{2}$ $C) \frac{1}{2}$ D) 0

E) 2

Inverse Matrix.