11.1: (MATRICES AND SYSTEMS OF LINEAR EQUATIONS)

If the augmented matrix of a system of linear equations is:	
The augmented matrix of a system of mean equations is: $ \begin{pmatrix} 1 & 2 & 3 \\ 0 & -x^2 & -4 \\ 0 & 0 & 4x^2 - 1 \end{pmatrix} $ then the system is inconsistent if $x =$ $ \begin{array}{l} \textbf{A} - \frac{1}{2} \\ \textbf{B} - \frac{1}{2} \\ \textbf{C} - 2 \\ \textbf{D} - \frac{1}{4} \\ \textbf{E} - \frac{1}{4} \end{array} $	Augmented Matrix.
If $\begin{bmatrix} 1 & -3 & 1 & 5 \\ 3 & -7 & 2 & 12 \\ 2 & -6 & k & 10 \end{bmatrix}$ is the augmented matrix of a dependent system of linear equations, then $k =$ A) 2 B) 4 C) 7 D) 1 E) 3	Augmented Matrix.

If the augmented matrix of a system of equations is $\begin{bmatrix} 1 & 2 & 3 & & 4 \\ 0 & 1 & C^2 & & 1 \\ 0 & 2 & 8 & & C \end{bmatrix}$, which one of	
the following is FALSE?	
A) The system is inconsistent for all $C \neq -2$	Augmented
B) The system is inconsistent for $C = -2$	Matrix.
C) The system has unique solution for all $C \neq \pm 2$.	
D) The system has infinitely many solutions for $C = 2$.	
E) The system can be made consistent or inconsistent for a suitable value of C .	
If $\begin{bmatrix} 5 & 5 & 4 \\ 4 & 4 & 2 \end{bmatrix}$ is the augmented matrix of a linear system then the solution set of	
the system is	
$(1 - c - c^{-3})$ where c is any real number	
A) $\left\{\left(1-c,c,-\frac{1}{2}\right)\right\}$, where c is any real number.	Augmented Matrix
B) $\left\{ \left(4,3,-\frac{3}{2} \right) \right\}$	inderix.
C) Ø	
D) { $(4 - 2c, 4 - 2c, c)$ }, where <i>c</i> is any real number.	
E) $(-\infty,\infty)$	
(x + kz = 1)	
The value of k for which the system of equations $\begin{cases} y + z = 2 \\ 2x + y = 5 \end{cases}$ is inconsistent equals	
A) $-\frac{1}{2}$	
B) -1	Augmented
C) $\frac{3}{2}$	Matrix.
$D) - \frac{3}{2}$	
$E) - \frac{5}{5}$	
2	

If the augmented matrix $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & -1 & 13 \\ 2 & 2 & 0 & 6 \end{bmatrix}$ is written in the echelon form as $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & k & m \\ 0 & 0 & 1 & n \end{bmatrix}$, then $k + m + n =$ A) 4 B) 8 C) 6 D) 16 E) 10	Augmented Matrix and Echelon Form.
If the echelon form of the augmented matrix $\begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 3 & 2 & 4 & 5 \\ 2 & 1 & 1 & 6 \end{bmatrix}$ is $\begin{bmatrix} 1 & a & b & 2 \\ 0 & 1 & c & 1 \\ 0 & 0 & 1 & -3/2 \end{bmatrix}$ then $abc =$ A) -1 B) 1 c) $\frac{1}{2}$ D) $-\frac{1}{2}$ E) 2	Augmented Matrix and Echelon Form.

The linear system whose augmented matrix is $\begin{bmatrix} 1 & -3 & 4 & & 1 \\ 2 & -5 & 3 & & 6 \\ 1 & -2 & -1 & & 5 \end{bmatrix}$, has	
A) infinitely many solutions	The
B) no solution	Augmented Matrix
C) one solution (1,2,1)	in den A.
D) one solution $(1, -2, -1)$	
E) one solution (1,6,5)	
If (a, b, c) is the solution of the system $\begin{cases} x - 3y + z = 8\\ 2x - 5y - 3z = 2 \end{cases}$, then $a + b + c = x + 4y + z = 1$	Elementary
A) -4	Row Operations
B) -6	for system
C) 6	equations.
D) -1	
E) 4	
If (a, b, c) is the solution of the system $\begin{cases} x - y + 3z &= 10\\ 2x - y + 7z &= 24\\ 3x - 6y + 7z &= 21 \end{cases}$ then $a + b + c =$	
A) 8 B) 13 C) 6 D) 10	Elementary Row Operations for system of equations.
E) 12	

If (a, b, c) is the solution of the linear system $\begin{cases} x - 3y + z = 8\\ 2x - 5y - 3z = 2\\ x + 4y + z = 1 \end{cases}$ then $5a = x + 4y + z = 1$	
A) 12	Elementary Row
B) -5	for system
C) 8	of
D) 5	equations.
E) 13	
If (u, v, w) is the solution of the linear system $\begin{cases} x - z = -3 \\ y + z = 9 \\ x + z = 7 \end{cases}$, then $uvw = x + z = 7$	
A) 40	Elementary Row
B) 20	for system
C) 11	of
D) 21	equations.
E) 13	
The system of linear equation $\begin{cases} x + 2y = 1 \\ x + 3y + z = 4 \\ 2y + 2z = 6 \end{cases}$ has	
	Elementary
A) three solutions only	Row
B) no solution	for system
C) a unique solution	of
D) infinitely many solutions	equations.
E) two solutions only	

(x-3y+z) = 5	
The system of linear equations $\begin{cases} -7y + 2z = 12 - 3x \end{cases}$	
(2x - 6y + 2z) = 10	
	Elementary
A) is dependent	Operations
B) has three solutions only	for system
C) is independent	equations.
D) is inconsistent	
E) has two solutions only	
If (a, b, c) is the solution of the linear system whose augmented matrix is	
$\begin{bmatrix} 1 & -1 & 2 & 4 \end{bmatrix}$	
$\begin{bmatrix} 0 & 1 & 2 & 5 \\ 1 & 2 & 1 & 2 \end{bmatrix}$, then $a + b + c =$	
	Elementary
	Row
A) 4	Operations
B) -5	for system of
C) 0	equations.
D) -3	
E) 6	
Let $\begin{bmatrix} 1 & 2 & 3 & -1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & k-1 & m-2 \end{bmatrix}$ be the augmented matrix of a linear system of	
equations, then the system is	
	System of
	linear
A) inconsistent if $k = 1$ and $m \neq 2$	and
B) dependent with infinite number of solutions if $k \neq 1$ and $m = 2$	Augmented
C) inconsistent if $k \neq 1$ and $m = 2$	Matrix.
D) independent with only one solution if $k = 1$ and $m = 2$	
E) dependent with infinite number of solutions if $k \neq 1$ and $m \neq 2$	