
1.7: Solving Inequalities

1. The solution set, in interval notation, of the inequality $\frac{1}{x-3} \ge \frac{1}{x-5}$, is

A) (3,5)
B)
$$(-\infty, 3) \cup (5, \infty)$$

C) $(-5, -3)$
D) [3,5]
E) $(-\infty, -5) \cup (-3, \infty)$

2. The solution set of the inequality $\frac{x}{2} \ge \frac{2}{x}$, is

A) $[-2,0) \cup [2,\infty)$ B) $(-\infty, -2] \cup (0,2]$ C) $(-\infty, -2] \cup [0,2]$ D) $[-2,0] \cup [2,\infty)$ E) $(-\infty, -1] \cup (1,\infty)$ 3. The solution set of the inequality $-\frac{1}{2} \le \frac{4-3x}{5} \le \frac{1}{4}$, is

4. The solution set in interval notation for the inequality $\frac{3}{x-2} < 1$ is

A) $(-\infty, 2) \cup (5, \infty)$ B) $(-\infty, 2) \cup (2, \infty)$ C) (2,5)D) $(2, \infty)$ E) $(5, \infty)$ 5. The solution set of the inequality $x^3 + 4x^2 - 9x \ge 36$ in interval notation is:

A) $[-4, -3] \cup [3, \infty)$ B) $[-4, -3] \cup [4, \infty)$ C) $(-4, -3) \cup (3, \infty)$ D) $(-3,3) \cup (3, \infty)$ E) $(3,4) \cup (4, \infty)$

6. The solution set, in interval notation of $\frac{2x-3}{x^2-36} \le \frac{1}{x+6}$ is

A) $(-\infty, -6) \cup [-3,6)$ B) $(-\infty, -6) \cup [-3, \infty)$ C) $(-6, -3] \cup (3,6)$ D) $(-\infty, 3/2) \cup [6, \infty)$ E) $(-6,3/2] \cup [6, \infty)$ 7. The solution set of $(x + 1)(x^2 + 10x + 25) \ge 0$ is:

A) $[-1, \infty) \cup \{-5\}$ B) $(-\infty, -5] \cup \{-1\}$ C) $(-\infty, -5] \cup [-1, \infty)$ D) $[-1, \infty)$ E) $(-\infty, -1]$

8. The set of all real values of k for which the equation $3x^2 - 2(k + 1)x + 3 = 0$ has only nonreal solutions is:

A) (-4,2)B) $(-\infty, -4)$ C) $(-\infty, -4) \cup (2,\infty)$ D) $(-\infty, 2)$ E) $(-4,\infty)$ 9. The solution set of $\frac{(x-2)^5(x^2+1)(x-3)^2}{(4-x)^3} \le 0$ is:

A) $(-\infty, 2] \cup \{3\} \cup (4, \infty)$ B) $(-\infty, -1] \cup [2,3] \cup [4, \infty)$ C) $(-\infty, 2] \cup [4, \infty)$ D) $[2,4) \cup \{3\}$ E) $[-1,2] \cup [3,4)$

10. The solution set, in interval notation, of the inequality $\frac{9}{x} \ge x - 8$

A) (−∞,−1] ∪ (0,9]

11. The solution set, in interval notation, of the inequality

$$\frac{-x^2 + x + 6}{(x+1)(x^2 + 1)} \le 0$$

12.If $|3 - 2x| \le 5$ is equivalent to $m \le 5x + 2 \le n$, then:

A) m = -3 and n = 22

13. The solution set of the compound inequality 3x + 5 > 0 and $9x + 2 \ge 4(x + 3)$ in interval notation is

14. The solution set in interval notation of the inequality $\frac{5}{x-1} \le \frac{2}{x-2}$ is

A)	(–∞,1) U	$\left(2,\frac{8}{3}\right)$
		<u>\ 3</u>

15. The solution set, in interval notation, of the inequality $\frac{x^2-2}{x} \ge \frac{2x+1}{x}$ is

A) [−1,0) ∪ [3,∞)

16. The solution set of the inequality $\frac{(9x-11)(2x+7)}{(3x-8)^3} < 0$ in interval:

A)
$$\left(-\infty,-\frac{7}{2}\right)\cup\left(\frac{11}{9},\frac{8}{3}\right)$$

17. The solution set of the inequality $\frac{4}{2-x} \ge \frac{3}{1-x}$ in interval notation is:

A) (−∞,−2] ∪ (1,2)

18. The solution set in interval notation of the inequality $\frac{5}{x} \le \frac{-5}{3x+2}$ is:

A)
$$\left(-\infty,-\frac{2}{3}\right)\cup\left[-\frac{1}{2},0\right)$$

19. If the solution set, in interval notation, of the inequality $1 > \frac{5+3x}{-2} >$

-10, is (p,q), then p + q =

20. The solution set, in interval notation, of the inequality $x - 1 \le \frac{12}{x}$ is

A) $(-\infty, -3] \cup (0,4]$ B) $(-\infty, -4] \cup (0,3]$ C) $[-3,0) \cup [4, \infty)$ 21. The solution set of the inequality $-\frac{3}{2} \le \frac{2-x}{6} \le \frac{5}{3}$ is

A) [11, ∞)B) (-∞, ∞)C) [-8,11]

22. The solution set of the inequality $\frac{2x-3}{x+1} \ge 1$ is

23. The values of k, in interval notation, for which the equation $x^2 + kx + 3k = 5$ has NO real solution, is

<mark>A) (2,10)</mark> B) (0,2)

- C) (0, 12)D) $(-\infty, 2) \cup (10, \infty)$
- E) $(-\infty, 0) \cup (12, \infty)$

24. The set of all real values of k, in interval notation, for which the quadratic equation $x^2 - 4x + k = 1$ has two distinct real solutions is

A) $(-\infty, 5)$ B) $(-\infty, -5)$ C) $(3, \infty)$ D) $(-\infty, 3)$ E) $(5, \infty)$

25. If the quadratic equation $2x^2 + kx + k - \frac{3}{2} = 0$, has two nonreal complex roots, then:

26. The solution set, in interval notation, of the inequality $\frac{x^2-4x+4}{x^2-9} \ge 0$ is

A) (−∞,−3) U (3,∞) U {2}

27. The solution set of the inequality $x + \frac{1}{x} \ge 0$ is

A) $(0, \infty)$ B) $[0, \infty)$ C) [-1,1]D) $(-\infty, -1] \cup (0,1]$ E) $[-1,0) \cup [1, \infty)$

28. The solution set of the inequality $x^2 - 2x + 1 \le 0$ is

A) {1} B) \emptyset C) $(-\infty, \infty)$ D) $(-\infty, 1)$ E) $(-\infty, 1) \cup (1, \infty)$

29. The solution set of the absolute value inequality $|x|^2 + |x| \ge 2$, is

A)
$$(-\infty, -1] \cup [1, \infty)$$

B) $(-\infty, -2] \cup [1, \infty)$
C) $(-\infty, -2] \cup [2, \infty)$
D) $(-\infty, -1]$
E) $(-\infty, -2]$