1.7: Solving Inequalities

1. The solution set, in interval notation, of the inequality $\frac{1}{x-3} \ge \frac{1}{x-5}$, is

A) (3,5)

- B) $(-\infty,3) \cup (5,\infty)$
- C) (-5, -3)
- D) [3,5]
- E) $(-\infty, -5) \cup (-3, \infty)$

2. The solution set of the inequality $\frac{x}{2} \ge \frac{2}{x}$, is

A) $[-2,0) \cup [2,\infty)$

- B) $(-\infty, -2] \cup (0,2]$
- C) $(-\infty, -2] \cup [0,2]$
- D) $[-2,0] \cup [2,\infty)$
- E) $(-\infty, -1] \cup (1, \infty)$

- 3. The solution set of the inequality $-\frac{1}{2} \le \frac{4-3x}{5} \le \frac{1}{4}$, is
 - A) $\left[\frac{11}{12}, \frac{13}{6}\right]$
 - $B)\left[\frac{5}{12},\frac{5}{6}\right]$
 - C) $\left[\frac{13}{12}, \frac{13}{6}\right]$
 - $\mathsf{D})\left[\frac{11}{10},\frac{13}{5}\right]$
 - $\mathsf{E})\left[\frac{13}{6},\frac{11}{5}\right]$

- 4. The solution set in interval notation for the inequality $\frac{3}{x-2} < 1$ is
 - A) $(-\infty, 2) \cup (5, \infty)$
 - B) $(-\infty, 2) \cup (2, \infty)$
 - C)(2,5)
 - D) (2,∞)
 - E) $(5, \infty)$

5. The solution set of the inequality $x^3 + 4x^2 - 9x \ge 36$ in interval notation is:

A)
$$[-4, -3] \cup [3, \infty)$$

B)
$$[-4, -3] \cup [4, \infty)$$

C)
$$(-4, -3) \cup (3, \infty)$$

D)
$$(-3,3) \cup (3,\infty)$$

E)
$$(3,4) \cup (4,\infty)$$

6. The solution set, in interval notation of $\frac{2x-3}{x^2-36} \le \frac{1}{x+6}$ is

A)
$$(-\infty, -6) \cup [-3,6)$$

B)
$$(-\infty, -6) \cup [-3, \infty)$$

C)
$$(-6, -3] \cup (3,6)$$

D)
$$(-\infty, 3/2) \cup [6, \infty)$$

E)
$$(-6.3/2] \cup [6, \infty)$$

7. The solution set of $(x + 1)(x^2 + 10x + 25) \ge 0$ is:

A)
$$[-1, \infty) \cup \{-5\}$$

- B) $(-\infty, -5] \cup \{-1\}$
- C) $(-\infty, -5] \cup [-1, \infty)$
- D) $[-1, \infty)$
- E) $(-\infty, -1]$

8. The set of all real values of k for which the equation $3x^2 - 2(k + 1)x + 3 = 0$ has only nonreal solutions is:

A)
$$(-4,2)$$

- B) $(-\infty, -4)$
- C) $(-\infty, -4) \cup (2, \infty)$
- D) $(-\infty, 2)$
- E) $(-4, \infty)$

9. The solution set of $\frac{(x-2)^5(x^2+1)(x-3)^2}{(4-x)^3} \le 0$ is:

A)
$$(-\infty, 2] \cup \{3\} \cup (4, \infty)$$

- B) $(-\infty, -1] \cup [2,3] \cup [4, \infty)$
- C) $(-\infty, 2] \cup [4, \infty)$
- D) [2,4) U {3}
- E) $[-1,2] \cup [3,4)$

10. The solution set, in interval notation, of the inequality $\frac{9}{x} \ge x - 8$

A)
$$(-\infty, -1) \cup (0,9)$$

11. The solution set, in interval notation, of the inequality

$$\frac{-x^2 + x + 6}{(x+1)(x^2+1)} \le 0$$

A)
$$[-2, -1) \cup [3, \infty)$$

12.If $|3 - 2x| \le 5$ is equivalent to $m \le 5x + 2 \le n$, then:

A)
$$m = -3$$
 and $n = 22$

13.The solution set of the compound inequality 3x+5>0 and $9x+2\geq 4(x+3)$ in interval notation is

14. The solution set in interval notation of the inequality $\frac{5}{x-1} \le \frac{2}{x-2}$ is

A)
$$\left(-\infty,1\right)\cup\left(2,\frac{8}{3}\right]$$

15. The solution set, in interval notation, of the inequality $\frac{x^2-2}{x} \ge \frac{2x+1}{x}$ is

A)
$$[-1,0) \cup [3,\infty)$$

16. The solution set of the inequality $\frac{(9x-11)(2x+7)}{(3x-8)^3} < 0$ in interval:

A)
$$\left(-\infty, -\frac{7}{2}\right) \cup \left(\frac{11}{9}, \frac{8}{3}\right)$$

17. The solution set of the inequality $\frac{4}{2-x} \ge \frac{3}{1-x}$ in interval notation is:

A)
$$(-\infty, -2] \cup (1,2)$$

18. The solution set in interval notation of the inequality $\frac{5}{x} \le \frac{-5}{3x+2}$ is:

A)
$$\left(-\infty, -\frac{2}{3}\right) \cup \left[-\frac{1}{2}, 0\right)$$

- 19.If the solution set, in interval notation, of the inequality $1>\frac{5+3x}{-2}>$ -10, is (p,q), then p+q=
 - A) $\frac{8}{3}$

20. The solution set, in interval notation, of the inequality $x-1 \le \frac{12}{x}$ is

A)
$$(-\infty, -3] \cup (0,4]$$

B)
$$(-\infty, -4] \cup (0,3]$$

C)
$$[-3,0) \cup [4,\infty)$$

21. The solution set of the inequality $-\frac{3}{2} \le \frac{2-x}{6} \le \frac{5}{3}$ is

B)
$$(-\infty, \infty)$$

22. The solution set of the inequality $\frac{2x-3}{x+1} \ge 1$ is

A)
$$(-\infty, -4)$$

B)
$$(-\infty, -1) \cup [4, \infty)$$

- 23. The values of k, in interval notation, for which the equation $x^2 + kx + 3k = 5$ has NO real solution, is
 - A) (2, 10)
 - B) (0,2)
 - C)(0,12)
 - D) $(-\infty, 2) \cup (10, \infty)$
 - E) $(-\infty, 0) \cup (12, \infty)$

- 24. The set of all real values of k, in interval notation, for which the quadratic equation $x^2-4x+k=1$ has two distinct real solutions is
 - A) $(-\infty, 5)$
 - B) $(-\infty, -5)$
 - C) $(3, \infty)$
 - D) $(-\infty,3)$
 - E) $(5, \infty)$

25.If the quadratic equation $2x^2 + kx + k - \frac{3}{2} = 0$, has two nonreal complex roots, then:

A)
$$2 < k < 6$$

26. The solution set, in interval notation, of the inequality $\frac{x^2-4x+4}{x^2-9} \ge 0$ is

A)
$$(-\infty, -3) \cup (3, \infty) \cup \{2\}$$

27. The solution set of the inequality $x + \frac{1}{x} \ge 0$ is

- A) $(0, \infty)$
- B) [0, ∞)
- C) [-1,1]
- D) $(-\infty, -1] \cup (0,1]$
- E) [-1,0) ∪ [1,∞)

28. The solution set of the inequality $x^2 - 2x + 1 \le 0$ is

- A) {1}
- B) Ø
- C) $(-\infty, \infty)$
- D) $(-\infty, 1)$
- E) $(-\infty, 1) \cup (1, \infty)$