1.4: Solving Quadratic Equations

1. If the quadratic equation $2x^2 + 16x + 30 = 0$ is written in the form $(x - a)^2 = b$, then a + b =

A) -3 B) -4 C) -2 D) 1 E) 5

2. If $x = a \mp b\sqrt{2}$ are the solutions of the quadratic equation $x^2 - 6x + 7 = 0$, then $a^2 + b^2 = b^2$

A) 10
B) 13
C) 5
D) 25
E) 20

3. If the area of the rectangle below is 21 square feet, then its perimeter in feet, is

4. If the quadratic equation $kx^2 - (k - 3)x + 1 = 0$ has two equal solutions, then one possible value of k, is

A) 9 B) — 1 C) -9 D) — 10 E) 10

- 5. If **4** is the sum and **1** is the product of the solutions of the equatic $2x^2 + bx + c = 0$, then b + c =
 - <mark>A) -6</mark> B) — 10 C) 10

6. If the equation $(\sqrt{2}x + 1)(\sqrt{2}x - 1) + 6x = 1$ is written in the form $(x - a)^2 = b$, then a + b =

A)
$$\frac{7}{4}$$

B) $\frac{19}{4}$
C) $\frac{\sqrt{13}}{2}$
D) $\frac{3}{4}$
E) $\frac{\sqrt{13}}{4}$

7. The quadratic equation $ax^2 - 7x + c = 0$ has sum of solutions 7/6 and product of solutions -1/2. The value of a + c is

A)	<mark>3</mark>
B)	-1
C)	-2
D)	5
E)	-4

8. If $1 + \sqrt{2}$ and $1 - \sqrt{2}$ are the solutions of the quadratic equation $x^2 + bx + c = 0$, then b + c =

A) -3 B) -1 C) −2 + 2√2 D) 1 E) 2 9. If the equation (3x - 4)(x + 1) = -2 is written in the form: $(x + m)^2 = n$ then m + n =

A) 19/36 B) -2/3 C) -1 D) 35/36 E) 1

10.If the discriminant of the quadratic equation $2x^2 + (3/5)x = k$ is 49/25, where k is a constant, then the solution set of the equation contains

A) one positive and one negative rational number

- B) two positive irrational numbers
- C) two positive rational numbers
- D) two negative rational numbers
- E) two negative irrational numbers

11. If the sum of squares of three consecutive positive integers a, b and c is 149, then a + b + b

c is equal to

A) 21 B) 30 C) 24 D) 15 E) 27

12. If the shorter sides of a right triangle have lengths k and 2k + 2 and if the hypotenuse has length k + 8, then the value of 3k + 1 is equal to:

<mark>A) 16</mark> B) 10

-, ---

C) 46

- D) 4
- E) -8

13. If the discriminant of the equation $\sqrt{2}x^2 + kx + \frac{\sqrt{2}}{5} = 0$ is equal to $\frac{8}{45}$, then a possible value of k is

A) 4/3 B) ²/₃

14. The value of k for which the quadratic equation $kx^2 + 3kx + (2k + 1) = 0$ has two equal solutions is:

A) 4 B) 0 C) – 4 D) 1 E) 2 15. If the sum and the product of the two roots of the equation $2x^2 + bx + c = 0$ are -4, and $-\frac{3}{2}$ respectively, then b + c is equal to

<mark>A) 5</mark>

16. If the equation $-3x^2 + 6x + 5 = 0$ is written in the form $(x - a)^2 = b$, then a + b =

17. When completing the square in the equation $9x^2 - 12x + 9 = 0$, we get $(x + a)^2 = b$, then $b - a^2$ is equal to:

<mark>A) -1</mark>

18. If completing the square in the equation 4x(x-2) = b, we get $(x - a)^2 = 3$, then $a + a^2 = 3$.

b =

<mark>A) 9</mark> B) 3

- C) 2
- D) 7
- E) 5

19. When completing the square in the equation 3x(x - 4) + 6 = 0, we get $(x + a)^2 = b$,

then a + b =

A) 10
B) 4
C) -8
D) 0

20. If $x_1 < x_2$ are the solutions of the equation 6x(1 - x) = x + 1, then $6x_1 - 2x_2 = x + 1$

<mark>A) 1</mark> B) 0 21. If $x = \frac{1}{2}$ is one of the solutions of the quadratic equation $2x^2 + x + k = 0$, then the other solution is

- <mark>A) -1</mark> B) 1 C) 2 D) -2
- E) 0

22. A farmer has a rectangular garden plot surrounded by 30 m of fence. If the area of the garden is 36 m^2 , then the dimensions of the garden are

A) 3*m* and 12*m*

- B) 4m and 11m
- C) 4 m and 9 m
- D) 5 m and 10 m $\,$
- E) $6\ m$ and $6\ m$

23. The length of a rectangle is one meter more than twice the width. If the area of the rectangle is 6 square meters, then its length in meters is

<u>A) 4</u>

24. If $16x^2 + 36a^4 - 48a^2x = 9$, then one value of x is equal to

A)
$$\frac{3}{4}(2a^2 - 1)$$

B) $\frac{3}{2}(2a^2 - 1)$
C) $\frac{1}{2}(2a^2 + 1)$
D) $\frac{1}{4}(2a^2 + 1)$
E) $3(2a^2 + 1)$