

1.2: Graphs of Equations and Circles

1. If the circle $(x - a)^2 + (y - b)^2 = 4, a < 0, b > 0$, is tangent to both axes, then $2a + 3b =$

A) 2

B) 4

C) -2

D) -4

E) 6

2. The graph of the equation $xy^2 = |x^4 - y^2|$, is

A) symmetric with respect to the x -axis only

B) not symmetric with respect to the x -axis, y -axis, nor to the origin

C) symmetric with respect to the x -axis and y -axis

D) symmetric with respect to the y -axis only

E) symmetric with respect to the origin only

3. If the graph of the circle $2x^2 + 2y^2 - 8x + 4y = 0$ has center (h, k) and radius r , then $h + k + r^2 =$

- A) 6
- B) 4
- C) $\sqrt{5} + 1$
- D) $\sqrt{5} - 1$
- E) 2

4. If the graph of the circle $(x + 2)^2 + (y - 3)^2 = k - 1$ is tangent to the y -axis, then $k =$

- A) 5
- B) 3
- C) 8
- D) 10
- E) 7

5. The equation $|x - y| = y^2 + 1$ is

- A) symmetric with respect to the origin only
- B) symmetric with respect to the x -axis only
- C) symmetric with respect to the y -axis only
- D) symmetric with respect to the x -axis, y -axis and origin

6. The equation of the circle having a diameter with endpoints $(-5,3)$ and $(1,5)$, is

- A) $x^2 + y^2 + 4x - 8y + 10 = 0$
- B) $x^2 + y^2 - 4x + 8y - 10 = 0$
- C) $x^2 + y^2 - 4x + 8y + 10 = 0$
- D) $x^2 + y^2 + 4x - 8y - 10 = 0$
- E) $x^2 + y^2 - 4x - 8y - 10 = 0$

7. The center $C(h, k)$ and the radius r of the circle $1/2x^2 + 1/2y^2 - 3x + 2y - 3/2 = 0$ are

- A) $C(3, -2)$, $r = 4$
- B) $C(2, -3)$, $r = 4$
- C) $C(3, -2)$, $r = \sqrt{15}$
- D) $C(3, -2)$, $r = \sqrt{17}$
- E) $C(3/2, -1)$, $r = \sqrt{2}/2$

8. The equation of the circle with center $(3, -1)$ and tangent to x -axis is

- A) $x^2 + y^2 - 6x + 2y + 9 = 0$
- B) $x^2 + y^2 - 6x + 2y = 0$
- C) $x^2 + y^2 + 6x - 2y - 9 = 0$
- D) $x^2 + y^2 - 6x + 2y + 1 = 0$
- E) $x^2 + y^2 + 6x - 2y - 3 = 0$

9. If the center of the circle $x^2 + y^2 + 4x - 6y = 9$ is $(2a + 1, 2b - 1)$, then value of ab is equal to

- A) -3
- B) $-3/4$
- C) $-2/3$
- D) $-1/3$
- E) $4/3$

10. The distance between the point $(-4, -4)$ and the center of the circle $x^2 + y^2 - 6x + 10y + 25 = 0$ is equal to

- A) $5\sqrt{2}$
- B) $4\sqrt{2}$
- C) $3\sqrt{2}$
- D) $2\sqrt{5}$
- E) $10\sqrt{5}$

11. The graph of the equation $y^3 = -x^3y^2 + \frac{x}{|x|}$ is symmetry with respect to

- A) the origin only
- B) the y -axis and the origin
- C) the x -axis and the origin
- D) the x -axis only
- E) the y -axis only.

12. The general equation of the circle with center at $C(3,2)$ and tangent to the x -axis is given by

- A) $x^2 - 6x + y^2 - 4y + 9 = 0$

13. If (h, k) is the center and r is the radius of the circle $2x^2 + 2y^2 - 6x + 10y = 1$, then $h + k + r =$

A) 2

14. The distance between the center of the circle $(x - 3)^2 + (y + 2)^2 = 36$ and the point $(-5, 3)$ is:

A) $\sqrt{89}$

15. A circle in the second quadrant, tangent to both axes, and of diameter 1 has an equation:

A) $4\left(x + \frac{1}{2}\right)^2 + 4\left(y - \frac{1}{2}\right)^2 = 1$

16. If (4,6) is one end point of a diameter of a circle with center $(-3,3/2)$, then the other end point of the diameter is:

A) $(-10, -3)$

17. Which of the following statements is FALSE about the graph of the equation: $(x - 3)^2 + (y - 2)^2 = m$

- A) If $m = -9$ then the graph of the equation is nonexistent
- B) If $m = 9$ then the graph of the equation is a circle that is tangent to y -axis
- C) If $m = 9$ then the graph of the equation is a circle that is tangent to x -axis**
- D) If $m = 0$ then the graph of the equation is a point that is above x -axis
- E) If $m = 4$ then the graph of the equation is a circle with radius 2

18. The graph of the equation $|xy| + |x|y = 1$ is symmetric with respect to

- A) both the x - and y -axes
- B) the x -axis only
- C) the y -axis only**
- D) the origin only
- E) both the x -axis and the origin.

19. If $x^2 + y^2 + ax + by + c = 0$ is the equation of the circle whose center is in the second quadrant, radius 5 and tangent to both the x -axis and the y -axis, then $a + b + c =$

- A) 5
- B) 25**
- C) 20

20. If (h, k) is the center and r is the radius of the circle $2x^2 + 2y^2 - 8x + 20y + 26 = 0$, then $h + k + r =$

- A) -3
- B) 1**

21. If $x^2 + y^2 + 2x + dy + 1 = 0$ is the equation of the circle that has center $(-1, a)$ in the second quadrant and tangent to both axes, then $a + d =$

A)-1

22. The product of the x -intercepts of the graph of the equation $(x - 1)^2 + y^2 = 2$ is

A) -1

23. For the circle, $3x^2 + 3y^2 + 18x + 24y + 27 = 0$, which one of the following is TRUE?

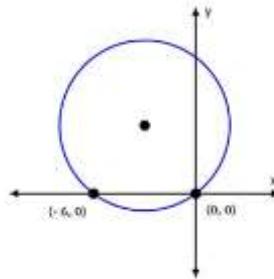
- A) The center is (3,4) and the radius is 2.
- B) The center is (4,3) and the radius is 4.
- C) The center is $(-3, -4)$ and the radius is 4.

24. If $x^2 + y^2 + 2x + y - 1 = k$ represents an equation of a circle, then the value(s) of k is (are)

A) $\left(-\frac{9}{4}, \infty\right)$

B) $\left(-\infty, -\frac{9}{4}\right)$

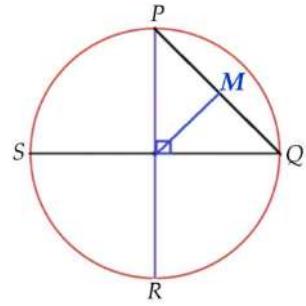
C) $-\frac{9}{4}$


D) $(-\infty, -4)$

E) $-\frac{11}{4}$

25. The graph of the equation $|y| = (x - y)^2$ is

- A) symmetric with respect to the origin only
- B) symmetric with respect to the x -axis only
- C) symmetric with respect to the y -axis only
- D) symmetric with respect to the x -axis and y -axis
- E) not symmetric with respect to the x -axis, y -axis and origin


26. An equation of the circle centered at $(-3,4)$ in the graph below, is

- A) $x^2 + y^2 + 6x - 8y = 0$
- B) $x^2 + y^2 - 6x + 8y = 0$
- C) $x^2 + y^2 + 6x - 8y - 25 = 0$
- D) $x^2 + y^2 - 6x + 8y - 25 = 0$
- E) $x^2 + y^2 + 6x - 8y + 25 = 0$

27. In the adjacent figure, the lines SQ and PR are the horizontal and vertical diameters of the circle $(x - 3)^2 + (y + 2)^2 = 16$. If the point $M(a, b)$ is the midpoint of the line segment PQ , then $a + b =$

- A) 5
- B) 3
- C) 7
- D) 10
- E) $4\sqrt{2}$

