- 1) If the angle of elevation from a point 12 feet from the base of a building to the top of the building is θ and if $\sec \theta = \frac{5}{4}$, then the height of the building is
 - A) 9 feet
 - B) 16 feet

C)
$$\frac{36}{5}$$
 feet

D) 8 feet

E)
$$\frac{48}{5}$$
 feet

2) The exact value of sin (- 210°) + cot (735°) + tan (285°) is

A)
$$\frac{1}{2}$$

B) $\frac{\sqrt{2}}{2}$
C) $-\frac{\sqrt{3}}{2}$
D) $-\frac{1}{2}$
E) $\frac{\sqrt{3}}{2}$

3) If $\tan \theta = \frac{3}{4}$, where θ is in the third quadrant, then $\csc \theta =$

A)
$$-\frac{5}{3}$$

B) $\frac{5}{3}$
C) $-\frac{13}{5}$
D) $-\frac{5}{4}$
E) $\frac{5}{4}$

4) The range of the function $f(x) = 3 - |\cos(x - \pi)|$ is

- A) [2,3]
- B) [2,4]
- C) [-3,3]
- D) (2,4)
- E) (2,3)

5) The graph of the function $f(x) = \csc\left(\frac{\pi x}{2}\right)$, -2 < x < 2, intersects the line y = -2 at

- A) 2 points
- B) 5 points
- C) 1 point
- D) 4 points
- E) 3 points

6) The number of the x-intercepts of the graph of $f(x) = 2 \tan \left(3x - \frac{\pi}{4}\right)$,

where
$$-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$$
, is

A) 4

- B) 3
- C) 1
- D) 5
- E) 2

MATH 002	MID-TREM EXAM	CODE 000
TERM: 201	OCTOBER 22, 2020	PAGE: 4

7) If P is the period of the graph of $f(x) = 5 \sec 2(x - \frac{\pi}{4})$ and A is the

amplitude of $y = -\pi \sin\left(\frac{x}{3}\right)$, then A + P =

- **A)** 2π
- B) 0
- C) 4π
- **D)** π
- E) 3π

- 8) If the domain of $f(x) = \pi + 5 \cos^{-1}(\frac{x}{2} + b)$ is [3,7], then 2b + 1 = 1
 - A) 4
 - B) 5
 - C) 4
 - D) 5
 - E) 6

- 9) The exact value of $\cos^{-1} \left[\cos \left(\frac{5\pi}{4} \right) \right]$ is
 - A) $\frac{3\pi}{4}$ B) $\frac{\pi}{4}$ C) $\frac{5\pi}{4}$ D) $-\frac{\pi}{4}$
 - E) undefined

10) Which one of the following statements is FALSE?

A) If
$$0 \le \theta < \frac{\pi}{2}$$
 and $\tan \theta = \frac{1}{2}$, then $\sin \theta = 1$ and $\cos \theta = 2$
B) If $0 \le \theta < \frac{\pi}{2}$, then $\sec^2 \theta - \tan^2 \theta = 1$
C) If $0 \le \theta < \frac{\pi}{2}$, then $\sin \left(\frac{\theta}{2}\right)$ is positive
D) The range of $\tan \theta$ is $(-\infty, \infty)$
E) $\sin \left(-\frac{\pi}{3}\right) = \sin \left(\frac{5\pi}{3}\right)$

11)
$$\cos^{-1}\left(-\frac{1}{2}\right) - \tan^{-1}\left(\frac{\sqrt{3}}{3}\right) =$$

A)
$$\frac{\pi}{2}$$

B) $\frac{3\pi}{2}$
C) $\frac{\pi}{3}$
D) $\frac{5\pi}{6}$
E) $\frac{7\pi}{4}$

12)
$$\tan\left[\sin^{-1}\left(-\frac{5}{13}\right)\right] =$$

4

A)
$$-\frac{5}{12}$$

B) $-\frac{4}{5}$
C) $\frac{12}{5}$
D) $-\frac{12}{5}$
E) $\frac{5}{12}$

13) Measurements taken 40 feet from the base of a flagpole show the angle of elevation to the top of the flagpole to be 60° and the angle of elevation to the bottom of the flag to be 45°. Determine the vertical width of the flag.

- 14) If the adjacent figure represents the graph of $y = -2\cos(bx + c)$, then
 - A) $b = \pi$ and $c = \frac{\pi}{2}$ B) $b = \pi$ and $c = -\frac{\pi}{2}$ C) $b = 2\pi$ and $c = -\frac{\pi}{4}$ D) $b = 2\pi$ and $c = \frac{\pi}{4}$ E) $b = \pi$ and $c = \frac{\pi}{4}$

MATH 002MID-TREM EXAMTERM: 201OCTOBER 22, 2020

15) The exact value of $12 \csc\left(\frac{35\pi}{3}\right) + \tan\left(-\frac{2\pi}{3}\right)$ is equal to

A) $- 7\sqrt{3}$ B) $\frac{10\sqrt{3}}{3}$ C) $- 3\sqrt{3}$ D) $4\sqrt{3}$ E) $- 5\sqrt{3}$

16) The reference angle of $\theta = \frac{11\pi}{15}$, in degrees, is equal to

- A) 48°
- B) 32°
- C) 49°
- D) 38°
- E) 35°

- 17) If $f(x) = a \tan(bx)$, b > 0, is a tangent function with period 3 and $f(1) = 2\sqrt{3}$, then $f\left(\frac{3}{4}\right) =$ A) 2 B) $\sqrt{3}$ C) 1 D) $\frac{2\sqrt{3}}{3}$ E) $\frac{\sqrt{3}}{3}$
- 18) If R is the reference angle of 1945° and Q is the smallest positive coterminal angle of 950° , then R + Q
 - A) 165°
 - B) 155[°]
 - C) 175°
 - D) 275[°]
 - E) 255°

19) In the following figure, if $\tan \alpha = \frac{2}{3}$, then $\theta =$

20) The smallest positive coterminal angle of $\theta = \frac{23\pi}{7}$ is

- A) in the third quadrant
- B) in the first quadrant
- C) in the fourth quadrant
- D) a quadrantal angle
- E) in the second quadrant