King Fahd University of Petroleum and Minerals Prep-Math Program

> MATH 002 SECOND MAJOR TERM 231 11 NOVEMBER 2023

EXAM COVER

Number of versions: 2 Number of questions: 20 King Fahd University of Petroleum and Minerals Prep-Math Program MATH 002 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

MASTER VERSION

1. The exact value of $\tan\left(-\frac{7\pi}{6}\right) + \sec\left(-\frac{\pi}{6}\right)$ is equal to

- 2. The graph of the function $f(x) = -3\sin(\frac{1}{3}x)$, with $0 \le x \le 6\pi$, lies completely below the x-axis on the interval
 - (a) $(0, 3\pi)$ _____(correct)
 - (b) $(0, 6\pi)$
 - (c) $(2\pi, 6\pi)$
 - (d) $(4\pi, 6\pi)$
 - (e) $(3\pi, 6\pi)$

3. Which one of the following statements is FALSE about the function

$$f(x) = 5\cos\left(3x - \frac{\pi}{4}\right) ?$$

- (a) The graph of f(x) has y-intercept at y = -1 _____(correct)
- (b) The range of f(x) is [-5,5]
- (c) The horizontal shift of the graph of f(x) is $\frac{\pi}{12}$ units to the right
- (d) The amplitude of the graph of f(x) is 5
- (e) The period of f(x) is $\frac{2\pi}{3}$

4. The **number** of vertical asymptotes of the graph of the function

$$f(x) = 2 + 3\csc(2x - \pi)$$
,

on the interval $[-\pi,\pi]$ is equal to

$5. \frac{4\tan x}{1+\tan^2 x} =$	
(a) $2\sin 2x$	 (correct)
(b) $2\cos 2x$	
(c) $2 \cot 2x$	
(d) $2 \sec 2x$	
(e) $2 \csc 2x$	

6. $(\sin^2 x)(1 + \cot x) + (\cos^2 x)(1 - \tan x) + \cot^2 x =$

(e) $\tan^2 x$

MASTER

7. The exact value of $\cos\left(\sin^{-1}\left(-\frac{3}{5}\right)\right)$ is equal to

8. The **sum** of solutions of the equation $2\sin^2 \frac{x}{2} = \cos x$, over the interval $[0, 2\pi)$ is equal to

9. If the **range** of the function $f(x) = 4\sin x + 3\cos x - 1$ is [m, n], then m + n =

- (c) -6
- (d) -1
- (e) -4

10. Which one of the following statements is TRUE ?

- (a) $\sin^{-1}(\frac{\pi}{5})$ is defined _____(correct)
- (b) $\tan(\tan^{-1}100)$ is undefined
- (c) $\cos\left(\cos^{-1}\left(-\frac{1}{2}\right)\right) = \frac{1}{2}$
- (d) $\tan^{-1} x = \frac{\sin^{-1} x}{\cos^{-1} x}$
- (e) The functions $y = \cos^{-1} x$ and $y = \sin^{-1} x$ have the same range

MASTER

11. The exact value of $\sin 15^{\circ} (8 - 16 \sin^2(7.5^{\circ}))$ is equal to

12. The **number** of solutions of the equation $4\sin x \cos x = \sqrt{2}$, $0 \le x < 2\pi$, is

(a) 4	(correct)
(b) 1	
(c) 2	
(d) 3	
(e) 5	

Page 7 of 10

MASTER

13. The exact value of	$\frac{1 - \cot(70^\circ) \cot(80^\circ)}{\tan(20^\circ) + \cot(80^\circ)}$	is equal to	
(a) $\sqrt{3}$			(correct)
(b) $2\sqrt{2}$			
(c) 1			
(d) $\frac{\sqrt{3}}{3}$			
(e) $\frac{\sqrt{3}}{2}$			

14. The graph of the function $f(x) = -\tan\left(\frac{\pi}{4}x - \frac{\pi}{2}\right)$, 0 < x < 8, is **completely above** the *x*-axis on

(a) $(0,2) \cup (4,6)$ _____(correct)

- (b) $(1,3) \cup (5,7)$
- (c) (0,3)
- (d) (0,4)
- (e) $(2,4) \cup (6,8)$

15. If x is in the **third quadrant**, then $\cot x$ in terms of $\sin x$ is

(a)
$$-\frac{\sqrt{1-\sin^2 x}}{\sin x}$$
 (correct)
(b) $\frac{\sqrt{1-\sin^2 x}}{\sin x}$
(c) $-\frac{\sin x}{\sqrt{1+\sin^2 x}}$
(d) $\frac{\sin x}{\sqrt{1+\sin^2 x}}$
(e) $-\frac{\sqrt{1-\sin x}}{\sin x}$

16. If $\tan x = \frac{12}{5}$ for all x is in the third quadrant, then $\cos x =$

17. The **range** of the graph of the function $f(x) = 1 - 2 \csc x$ is

- (a) $(-\infty, -1] \cup [3, \infty)$ _____(correct)
- (b) $(-\infty, -2] \cup [2, \infty)$
- (c) $(-\infty, -3] \cup [2, \infty)$
- (d) $[1,\infty)$
- (e) [-1,3]

18.
$$\cot \frac{x}{2} - \cos x \cot \frac{x}{2} =$$

(e) $\csc x$

19. The sum of solutions of the equation $\cos 2x - \cos x = 0$, on the interval $[0, 2\pi)$ is

(e) 5π

20. If $\cos(x+y) = 1$, and $\cos(x-y) = 1$, then $\cos x \cos y = 1$

(a)	1	(correct)
(b) -	-1	
(c)	2	
(d) -	-2	

(e) 0

King Fahd University of Petroleum and Minerals Prep-Math Program

CODE001

CODE001

MATH 002 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

Name		
ID	Sec	

Check that this exam has 20 questions

Important Instructions:

- 1. All types of calculators, smart watches, mobile phones, or any other devices are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

CODE001

1. The exact value of $\cos\left(\sin^{-1}\left(-\frac{3}{5}\right)\right)$ is equal to

(a)
$$-\frac{4}{5}$$

(b) $\frac{3}{4}$
(c) $-\frac{3}{4}$
(d) $\frac{4}{5}$
(e) $\frac{3}{5}$

2. If $\tan x = \frac{12}{5}$ for all x is in the third quadrant, then $\cos x =$

(a)
$$\frac{5}{13}$$

(b) $\frac{12}{13}$
(c) $-\frac{5}{13}$
(d) $-\frac{12}{13}$
(e) $\frac{13}{5}$

- 3. $(\sin^2 x)(1 + \cot x) + (\cos^2 x)(1 \tan x) + \cot^2 x =$
 - (a) $\csc^2 x$
 - (b) $\tan^2 x$
 - (c) $\sec^2 x$
 - (d) $\cos^2 x$
 - (e) $\sin^2 x$

4. Which one of the following statements is FALSE about the function

$$f(x) = 5\cos\left(3x - \frac{\pi}{4}\right) ?$$

- (a) The amplitude of the graph of f(x) is 5
- (b) The horizontal shift of the graph of f(x) is $\frac{\pi}{12}$ units to the right
- (c) The range of f(x) is [-5,5]
- (d) The period of f(x) is $\frac{2\pi}{3}$
- (e) The graph of f(x) has y-intercept at y = -1

- 5. If the **range** of the function $f(x) = 4 \sin x + 3 \cos x 1$ is [m, n], then m + n =
 - (a) -3
 - (b) -4
 - (c) -6
 - (d) -1
 - (e) -2

6. The number of vertical asymptotes of the graph of the function

 $f(x) = 2 + 3\csc(2x - \pi)$,

on the interval $[-\pi,\pi]$ is equal to

- (a) 4
- (b) 3
- (c) 2
- (d) 6
- (e) 5

- 7. The graph of the function $f(x) = -3\sin(\frac{1}{3}x)$, with $0 \le x \le 6\pi$, lies completely below the x-axis on the interval
 - (a) $(0, 3\pi)$
 - (b) $(0, 6\pi)$
 - (c) $(3\pi, 6\pi)$
 - (d) $(4\pi, 6\pi)$
 - (e) $(2\pi, 6\pi)$

- $8. \quad \frac{4\tan x}{1+\tan^2 x} =$
 - (a) $2 \csc 2x$
 - (b) $2 \cot 2x$
 - (c) $2 \sec 2x$
 - (d) $2\cos 2x$
 - (e) $2\sin 2x$

9. If x is in the **third quadrant**, then $\cot x$ in terms of $\sin x$ is

(a)
$$-\frac{\sqrt{1-\sin x}}{\sin x}$$

(b) $-\frac{\sqrt{1-\sin^2 x}}{\sin x}$
(c) $\frac{\sin x}{\sqrt{1+\sin^2 x}}$
(d) $\frac{\sqrt{1-\sin^2 x}}{\sin x}$
(e) $-\frac{\sin x}{\sqrt{1+\sin^2 x}}$

10. The graph of the function $f(x) = -\tan\left(\frac{\pi}{4}x - \frac{\pi}{2}\right)$, 0 < x < 8, is **completely above** the *x*-axis on

- (a) $(1,3) \cup (5,7)$
- (b) $(2,4) \cup (6,8)$
- (c) $(0,2) \cup (4,6)$
- (d) (0,4)
- (e) (0,3)

11. If $\cos(x+y) = 1$, and $\cos(x-y) = 1$, then $\cos x \cos y = 1$

- (a) -2
- (b) 2
- (c) 1
- (d) 0
- (e) −1

12. The **range** of the graph of the function $f(x) = 1 - 2 \csc x$ is

- (a) [-1,3]
- (b) $(-\infty, -2] \cup [2, \infty)$
- (c) $(-\infty, -1] \cup [3, \infty)$
- (d) $[1,\infty)$
- (e) $(-\infty, -3] \cup [2, \infty)$

13. The **number** of solutions of the equation $4\sin x \cos x = \sqrt{2}$, $0 \le x < 2\pi$, is

- (a) 5
- (b) 3
- (c) 2
- (d) 1
- (e) 4

14. The exact value of $\tan\left(-\frac{7\pi}{6}\right) + \sec\left(-\frac{\pi}{6}\right)$ is equal to

(a) $\frac{\sqrt{3}}{3}$ (b) $\frac{\sqrt{3}}{2}$ (c) $-\frac{\sqrt{3}}{3}$ (d) $-\frac{2\sqrt{3}}{3}$ (e) $-\frac{3\sqrt{3}}{2}$

- 15. The **sum** of solutions of the equation $2\sin^2 \frac{x}{2} = \cos x$, over the interval $[0, 2\pi)$ is equal to
 - (a) 2π
 - (b) 4π
 - (c) $-\pi$
 - (d) π
 - (e) 3π

16. The exact value of $\sin 15^{\circ} (8 - 16 \sin^2(7.5^{\circ}))$ is equal to

(e) 8

CODE001

- 17. Which one of the following statements is TRUE ?
 - (a) $\tan(\tan^{-1}100)$ is undefined

(b)
$$\cos\left(\cos^{-1}\left(-\frac{1}{2}\right)\right) = \frac{1}{2}$$

(c)
$$\tan^{-1} x = \frac{\sin^{-1} x}{\cos^{-1} x}$$

- (d) $\sin^{-1}(\frac{\pi}{5})$ is defined
- (e) The functions $y = \cos^{-1} x$ and $y = \sin^{-1} x$ have the same range

18.
$$\cot \frac{x}{2} - \cos x \cot \frac{x}{2} =$$

- (a) $\tan x$
- (b) $\sin x$
- (c) $\cos x$
- (d) $\cot x$
- (e) $\csc x$

CODE001

19. The exact value of

$$\frac{1 - \cot(70^{\circ})\cot(80^{\circ})}{\tan(20^{\circ}) + \cot(80^{\circ})}$$
 i

- (a) 1
- (b) $2\sqrt{2}$

(c)
$$\frac{\sqrt{3}}{3}$$

(d) $\frac{\sqrt{3}}{2}$

(e) $\sqrt{3}$

20. The sum of solutions of the equation $\cos 2x - \cos x = 0$, on the interval $[0, 2\pi)$ is

- (a) π
- (b) 5π
- (c) 3π
- (d) 4π
- (e) 2π

King Fahd University of Petroleum and Minerals Prep-Math Program

CODE002

CODE002

MATH 002 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

Name		
ID	Sec	

Check that this exam has 20 questions

Important Instructions:

- 1. All types of calculators, smart watches, mobile phones, or any other devices are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. The exact value of $\cos\left(\sin^{-1}\left(-\frac{3}{5}\right)\right)$ is equal to

(a)
$$-\frac{3}{4}$$

(b) $-\frac{4}{5}$
(c) $\frac{4}{5}$
(d) $\frac{3}{4}$
(e) $\frac{3}{5}$

2. If x is in the **third quadrant**, then $\cot x$ in terms of $\sin x$ is

(a)
$$-\frac{\sqrt{1-\sin^2 x}}{\sin x}$$

(b)
$$\frac{\sin x}{\sqrt{1+\sin^2 x}}$$

(c)
$$\frac{\sqrt{1-\sin^2 x}}{\sin x}$$

(d)
$$-\frac{\sqrt{1-\sin x}}{\sin x}$$

(e)
$$-\frac{\sin x}{\sqrt{1+\sin^2 x}}$$

3. Which one of the following statements is FALSE about the function

$$f(x) = 5\cos\left(3x - \frac{\pi}{4}\right) ?$$

- (a) The amplitude of the graph of f(x) is 5
- (b) The range of f(x) is [-5,5]
- (c) The graph of f(x) has y-intercept at y = -1
- (d) The horizontal shift of the graph of f(x) is $\frac{\pi}{12}$ units to the right
- (e) The period of f(x) is $\frac{2\pi}{3}$

- 4. $(\sin^2 x)(1 + \cot x) + (\cos^2 x)(1 \tan x) + \cot^2 x =$
 - (a) $\sin^2 x$
 - (b) $\csc^2 x$
 - (c) $\cos^2 x$
 - (d) $\tan^2 x$
 - (e) $\sec^2 x$

5. If $\tan x = \frac{12}{5}$ for all x is in the third quadrant, then $\cos x =$

(a)
$$-\frac{12}{13}$$

(b) $\frac{13}{5}$
(c) $\frac{5}{13}$
(d) $-\frac{5}{13}$
(e) $\frac{12}{12}$

 $\overline{13}$

6. Which one of the following statements is TRUE ?

- (a) The functions $y = \cos^{-1} x$ and $y = \sin^{-1} x$ have the same range
- $\tan(\tan^{-1}100)$ is undefined (b)
- (c) $\sin^{-1}(\frac{\pi}{5})$ is defined
- (d) $\cos\left(\cos^{-1}\left(-\frac{1}{2}\right)\right) = \frac{1}{2}$
- (e) $\tan^{-1} x = \frac{\sin^{-1} x}{\cos^{-1} x}$

- 7. The graph of the function $f(x) = -\tan\left(\frac{\pi}{4}x \frac{\pi}{2}\right)$, 0 < x < 8, is **completely above** the *x*-axis on
 - (a) (0,3)
 - (b) $(0,2) \cup (4,6)$
 - (c) $(1,3) \cup (5,7)$
 - (d) (0,4)
 - (e) $(2,4) \cup (6,8)$

8. The exact value of	$\frac{1 - \cot(70^{\circ})\cot(80^{\circ})}{\tan(20^{\circ}) + \cot(80^{\circ})}$	is equal to
-----------------------	--	-------------

(a)
$$\frac{\sqrt{3}}{2}$$

(b) $\frac{\sqrt{3}}{3}$
(c) 1

- (d) $2\sqrt{2}$
- (e) $\sqrt{3}$

9. The **number** of vertical asymptotes of the graph of the function

$$f(x) = 2 + 3\csc(2x - \pi)$$
,

- (a) 3
- (b) 2
- (c) 6
- (d) 4
- (e) 5

- 10. The **range** of the graph of the function $f(x) = 1 2 \csc x$ is
 - (a) $(-\infty, -3] \cup [2, \infty)$
 - (b) [-1,3]
 - (c) $[1,\infty)$
 - (d) $(-\infty, -1] \cup [3, \infty)$
 - (e) $(-\infty, -2] \cup [2, \infty)$

11. The exact value of $\tan\left(-\frac{7\pi}{6}\right) + \sec\left(-\frac{\pi}{6}\right)$ is equal to

(a)
$$\frac{\sqrt{3}}{3}$$

(b) $-\frac{\sqrt{3}}{3}$
(c) $-\frac{2\sqrt{3}}{3}$
(d) $\frac{\sqrt{3}}{2}$

(e) $-\frac{3\sqrt{3}}{2}$

- 12. The graph of the function $f(x) = -3\sin(\frac{1}{3}x)$, with $0 \le x \le 6\pi$, lies completely below the x-axis on the interval
 - (a) $(0, 6\pi)$
 - (b) $(4\pi, 6\pi)$
 - (c) $(3\pi, 6\pi)$
 - (d) $(0, 3\pi)$
 - (e) $(2\pi, 6\pi)$

12	$4 \tan x$		
10.	$1 + \tan^2 x$	_	

- (a) $2 \csc 2x$
- (b) $2\cos 2x$
- (c) $2\cot 2x$
- (d) $2 \sec 2x$
- (e) $2\sin 2x$

14. If $\cos(x+y) = 1$, and $\cos(x-y) = 1$, then $\cos x \cos y =$

- (a) 1
- (b) 2
- (c) -2
- (d) 0
- (e) -1

- 15. If the **range** of the function $f(x) = 4 \sin x + 3 \cos x 1$ is [m, n], then m + n =
 - (a) -1
 - (b) -3
 - (c) -2
 - (d) -6
 - (e) -4

16. The **number** of solutions of the equation $4\sin x \cos x = \sqrt{2}$, $0 \le x < 2\pi$, is

- (a) 1
- (b) 4
- (c) 3
- (d) 5
- (e) 2

17.
$$\cot\frac{x}{2} - \cos x \cot\frac{x}{2} =$$

- (a) $\tan x$
- (b) $\cot x$
- (c) $\cos x$
- (d) $\csc x$
- (e) $\sin x$

- 18. The **sum** of solutions of the equation $2\sin^2 \frac{x}{2} = \cos x$, over the interval $[0, 2\pi)$ is equal to
 - (a) 2π
 - (b) π
 - (c) 4π
 - (d) $-\pi$
 - (e) 3π

19. The exact value of $\sin 15^{\circ} (8 - 16 \sin^2(7.5^{\circ}))$ is equal to

- (a) 8
- (b) $\frac{1}{2}$
- (c) 2
- (d) 4
- (e) $\frac{1}{4}$

20. The ${\bf sum}$ of solutions of the equation $\ \cos 2x - \cos x = 0$, on the interval $\ [0,2\pi)$ is

- (a) 4π
- (b) 3π
- (c) 5π
- (d) 2π
- (e) π

MATH 002, TERM 231, SECOND MAJOR

MASTER CODE001 CODE002 Q D 7 C 7 1 А A 15 2 А С 16 С_3 A 6 3 А В 6 4 А Ез 5E₉ А D 16 6 А E₄ C 10 7 А В 14 A_{2} Е 13 8 А E 5 Е 4 9 А В 15 C_{14} 10 А D 17 C 20 А A 1 11 $\mathrm{C}_{_{17}}$ 12 А D 2 Е 12 E_5 13 А 14 А A_{1} A 20 A 8 С 9 15А 16 А C 11 B 12 17 А D 10 E 18 B 18 А 18 A ₈ С 11 Е 13 А 19 20 А Е 19 D 19

Answer KEY

Answer Counts

V	A	В	С	D	Е
1	4	2	5	2	7
2	4	3	5	4	4