- 1) If $\ln 4 = x$ and $\ln 3 = y$, then in terms of x and y, $\log_{\sqrt{3}} 18 =$
 - A) $\frac{x+4y}{y}$
 - B) $\frac{x+2y}{y^2}$
 - C) $\frac{x+2y}{2y}$
 - D) $\frac{x+4y}{2\sqrt{y}}$
 - E) $\frac{2x + 2y}{y}$
- 2) If $A = log_2 8$ and $B = (log_3 \sqrt{2}) \cdot (log_2 8)$, then $A^B =$
 - A) 8
 - B) 3
 - C) $\sqrt{2}$
 - D) 4
 - E) 2

Major Exam I Tuesday, October 24, 2017

Code: 000 Page 2

3) The solution set of the equation
$$\sqrt{\log_2 x} = -\log_2 \sqrt{x}$$
 contains

- A) one positive integer only
- B) one positive and one negative integers
- C) no real numbers
- D) two positive integers
- E) one negative integer only

4) If
$$x, y > 0$$
 then $-\log_3 x - \log_9 4y^2 + \log_{\sqrt{3}} xy =$

A)
$$\log_3\left(\frac{xy}{2}\right)$$

B)
$$\log_3\left(\frac{2}{xy^2}\right)$$

C)
$$\log_3\left[\frac{2 x}{y^2}\right]$$

D)
$$\log_3\left[\frac{x^2}{2y}\right]$$

E)
$$\log_3\left(\frac{2 x^2}{y^2}\right)$$

- 5) Which one of the following statements is FALSE about the graph of the function $f(x) = \log |2x 1|$?
 - A) the graph is increasing on the interval $\left(-\infty, \frac{1}{2}\right)$
 - B) the graph has a vertical asymptote at $x = \frac{1}{2}$
 - C) the graph is below the x-axis in the interval $(0, \frac{1}{2}) \cup (\frac{1}{2}, 1)$
 - D) the graph has x-intercepts at x = 0 and x = 1
 - E) the graph has the domain $\left(-\infty, \frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$
- 6) If $f(x) = \frac{1}{x+2}$, $x \ne -2$ and $f^{-1}(x) = \frac{b+ax}{x}$, then a+b=
 - A) -1
 - B) $\frac{1}{2}$
 - C) 4
 - D) 2
 - E) 0

7) The sum of all the solutions of the equation $4^{x} - 6(2^{x}) + 8 = 0$ is:

- A) 3
- B) $\frac{7}{2}$
- C) $\frac{3}{2}$
- D) 5
- E) 2

8) If $f(x) = x^2 + 2$; x < 0, then $(f^{-1} \circ f)(-1) + f^{-1}(6) =$

- A) 3
- B) 3
- C) $\sqrt{5}$
- D) $2\sqrt{3}$
- E) 9

- 9) If α is the supplementary angle of 23 °15′ and β is the smallest positive coterminal angle of 582°, then $\alpha + \beta =$
 - A) 294°45′
 - B) 295°5′
 - C) 284°45′
 - D) 290°35′
 - E) 292°45′
- 10) A tire rotates 240 times per minute. Through how many degrees does a point on the edge of the tire move in 1/2 second?
 - A) 720°
 - B) 1040°
 - C) 1440°
 - D) 180°
 - E) 360°

- 11) The point (-4, y) lies on the terminal side of an angle θ in standard position. If $\sin\theta = -\frac{2}{3}$, then the value of y is:
 - A) $-\frac{8\sqrt{5}}{5}$
 - B) $-\frac{4\sqrt{5}}{5}$
 - C) 12
 - $D) \qquad \frac{2\sqrt{5}}{9}$
 - E) $-\frac{\sqrt{5}}{18}$
- 12) If the terminal side of the angle θ lies on the line 2x + 3y = 0 and $x \le 0$ then the value of $\sec \theta + \csc \theta$ is equal to:
 - A) $\frac{\sqrt{13}}{6}$
 - $B) \qquad \frac{5\sqrt{13}}{6}$
 - C) $-\frac{5\sqrt{13}}{6}$
 - D) $-\frac{\sqrt{13}}{6}$
 - E) $\frac{2}{3}$

- 13) The reference angle α' , in **radians**, of the angle $\alpha = 920^{\circ}$ is equal to:
 - A) $\frac{\pi}{9}$
 - B) $\frac{\pi}{3}$
 - C) $\frac{\pi}{5}$
 - D) $\frac{\pi}{10}$
 - E) $\frac{\pi}{6}$
- 14) If (a, 0) is the x-intercept and (0, b) is the y-intercept of the graph of the function $f(x) = -2^{-x+2} + 8$, then b a =
 - A) 5
 - B) 0
 - C) 3
 - D) 3
 - E) 4

- Suppose that you stand in front of a 240 meters high building. If the angle of elevation to the top of the building is $\frac{\pi}{3}$, how far are you from the base of the building?
 - A) $80\sqrt{3}$ meters
 - B) $240\sqrt{3}$ meters
 - C) $20\sqrt{3}$ meters
 - D) $\frac{80\sqrt{3}}{3}$ meters
 - E) $60\sqrt{3}$ meters
- 16) If a 135° central angle intercepts a 6π centimeters arclength on a circle of radius r , then r =
 - A) 8 cm
 - B) 10 cm
 - C) 12 cm
 - D) 6 cm
 - E) 16 cm

- 17) In the figure below, $\frac{\sqrt{6}yz}{w} =$
 - A) 12
 - B) 8
 - C) 14
 - D) 10
 - E) 20
- 18) If $\left[\sqrt[3]{5}\right]^{-x} = \left[\frac{1}{5}\right]^{x-2}$, then 2x 1 =
 - A) 5
 - B) $\frac{1}{3}$
 - C) 5
 - D) 1
 - E) $-\frac{1}{3}$

19)
$$2\cos(570^\circ) \cdot \csc(-630^\circ) \cdot \cot(-120^\circ) =$$

- A) 1
- B) 1
- C) $\frac{1}{2}$
- D) $-\frac{1}{2}$
- E) $\sqrt{3}$
- 20) The figure below, represents the graph of the function

A)
$$f(x) = 3 - 2^{-x}$$

B)
$$f(x) = 3 - 3^{-x}$$

C)
$$f(x) = -3 + 2^{x}$$

D)
$$f(x) = 3 + 3^{-x}$$

E)
$$f(x) = 3 + 2^{-x}$$