- 1) The domain of the expression $\frac{(x-2)(x-4)}{x^2-5x+4}$ is
 - A) $(-\infty, 1) \cup (1, 4) \cup (4, \infty)$
 - B) $(-\infty, 2) \cup (2, 4) \cup (4, \infty)$
 - C) $(-\infty, 1) \cup (1, \infty)$
 - D) $(-\infty, 2) \cup (2, \infty)$
 - E) $(-\infty,0)\cup(0,\infty)$

- 2) $\frac{2}{x} \frac{x^2 1}{(x + 1)(x 3)} \div \frac{x^2 x}{x 3} =$
 - A) $\frac{1}{x}$
 - B) $\frac{2}{x(x+1)^2}$
 - C) 1
 - $D) \qquad \frac{x+1}{x-3}$
 - E) $\frac{x(x-1)^2}{x-3}$

3)
$$\frac{x+y}{x-y} \cdot \frac{x^{-1}y-xy^{-1}}{x^{-1}+y^{-1}} =$$

C)
$$x + y$$

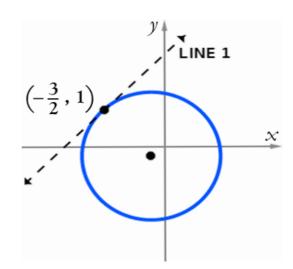
4) If
$$\frac{1}{2}$$
 is a solution of the equation $3x - \frac{kx}{2} = \frac{x+1}{3} - \frac{1}{4}$, then $k =$

- A) 5
- B) 6
- C) $\frac{17}{3}$
- D) $-\frac{17}{3}$
- E) 4

- 5) The sum of the solution set of the equation $(x + 1)^{\frac{2}{3}} = 4$ is
 - A) 2
 - B) 9
 - C) 7
 - D) 7
 - E) 3

- 6) If $\frac{1}{w} = \frac{1}{x} + \frac{1}{y}$, then x =
 - A) $\frac{wy}{y-w}$
 - B) $\frac{wy}{w-y}$
 - C) w-y
 - D) *y w*
 - E) $\frac{w-y}{wy}$

- 7) If (m, n) is the midpoint of the line joining the x-intercept and y-intercept of the graph of $y = -\sqrt{x+1}$, then m+n=
 - A) 1
 - B) 0
 - C) $-\frac{1}{2}$
 - D) $-\frac{1}{4}$
 - E) $\frac{1}{2}$
- 8) If y < x, then the distance between the points $(\sqrt{3}x, y)$ and $(\sqrt{3}y, x)$ is equal to
 - A) 2(x y)
 - B) 2(y x)
 - C) 3(y x)
 - D) 3(x y)
 - E) 4(y x)


- 9) If the graph of the circle $2x^2 + 2y^2 8x + 4y = 0$ has center (h, k) and radius r, then $h + k + r^2 =$
 - A) 6
 - B) 4
 - C) $\sqrt{5} + 1$
 - D) $\sqrt{5} 1$
 - E) 2

- 10) If the graph of the circle $(x + 2)^2 + (y 3)^2 = k 1$ is tangent to the y-axis, then k = x + 2
 - A) 5
 - B) 3
 - C) 8
 - D) 10
 - E) 7

- 11) The equation $|x y| = y^2 + 1$ is
 - A) symmetric with respect to the origin only
 - B) symmetric with respect to the x-axis only
 - C) symmetric with respect to the y-axis only
 - D) symmetric with respect to the x-axis, y-axis and origin
 - E) not symmetric with respect to the x-axis, y-axis and origin

- 12) If ax + by + c = 0 is the equation of the line that passes through the point (-1, 4) and parallel to the line 3x + 2y 6 = 0, then $(a \cdot b) + c =$
 - A) 1
 - B) 8
 - C) 3
 - D) 11
 - E) 20

- 13) If slope of the line passing through the points (k, -3) and $(-\frac{1}{2}, -2k)$ is $\frac{2}{3}$, then 4k =
 - A) 10
 - B) 5
 - C) 10
 - D) 5
 - E) 8
- 14) In the adjacent figure, if Ax By = -36 represents the equation of LINE 1 that is tangent to the circle $\left(x + \frac{1}{3}\right)^2 + \left(y + \frac{1}{4}\right)^2 = 3$, then A + B =
 - A) 29
 - B) 1
 - C) 1
 - D) 24
 - E) 36

- 15) If the quadratic equation $kx^2 (k 3)x + 1 = 0$ has two equal solutions, then one possible value of k, is
 - A) 9
 - B) 1
 - C) 9
 - D) 10
 - E) 10

- 16) If 4 is the sum and 1 is the product of the solutions of the equation $2x^2 + bx + c = 0$, then b + c =
 - A) 6
 - B) 10
 - C) 10
 - D) 6
 - E) 4

- 17) If the equation $(\sqrt{2} x + 1)(\sqrt{2} x 1) + 6x = 1$ is written in the form $(x - a)^2 = b$, then a + b =
 - A) $\frac{7}{4}$
 - B)
 - $\frac{19}{4}$ $\frac{\sqrt{13}}{2}$ $\frac{3}{4}$ $\frac{\sqrt{13}}{4}$ C)
 - D)
 - E)
- 18) The sum of the real and imaginary parts of the complex number $(1 - 2i)(\sqrt{-4} - \sqrt[3]{-27}) + i^{11}$, is equal to
 - A) 2
 - B) 4
 - C) 8
 - 10 D)
 - E) 12

- 19) The conjugate of the complex number $(2 3i)^{-1}$ is
 - A) $\frac{2}{13} \frac{3}{13}i$
 - B) $\frac{2}{13} + \frac{3}{13}i$
 - C) $\frac{1}{2} + \frac{1}{3}i$
 - D) $\frac{1}{2} \frac{1}{3}i$
 - E) $-\frac{2}{5} + \frac{3}{5}i$
- 20) If $a \pm bi$ are the nonreal complex solutions of the equation $x^3 + 1 = 0$, then $a \cdot b =$
 - A) $\frac{\sqrt{3}}{4}$
 - B) 1
 - C) $\frac{\sqrt{3}}{2}$
 - D) $\frac{1}{2}$
 - E) $\frac{1}{4}$