King Fahd University of Petroleum and Minerals Prep-Math Program

MATH 001 SECOND MAJOR TERM 231 11 NOVEMBER 2023

EXAM COVER

Number of versions: 4 Number of questions: 20 King Fahd University of Petroleum and Minerals Prep-Math Program MATH 001 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

MASTER VERSION

231, MATH 001, SECOND MAJOR

MASTER

1. The **sum** of all the real solution(s) of the equation $(x+1)^{\frac{2}{3}} + 3 = 12$ is

(a) -2	(correct)
(b) 3	
(c) -4	
(d) -9	

(e) 27

3. If a < b, then the **distance** between the points (1, a) and (1, 2b - a) is equal to

- (a) 2(b-a) ______(correct) (b) 2(a-b)(c) 4(a-b)(d) 2(a+b)
- (e) 2b

- 4. Let M(x, y) be the **midpoint** of the line segment that joins the points (3, 4) and (k, 6). If x + y = 1, then the value of k is equal to
 - (a) -11 _____(correct) (b) -4 (c) -6
 - (d) 8
 - (e) 5

5. If $x^2 + y^2 + 2x + y - 1 = k$ represents an **equation of a circle**, then the value(s) of k is (are)

(a)
$$\left(-\frac{9}{4},\infty\right)$$
 (correct)
(b) $\left(-\infty,-\frac{9}{4}\right)$
(c) $-\frac{9}{4}$
(d) $(-\infty,-4)$
(e) $-\frac{11}{4}$

6. The graph of the equation $|y| = (x - y)^2$ is

- (a) symmetric with respect to the origin only _____(correct)
- (b) symmetric with respect to the x-axis only
- (c) symmetric with respect to the y-axis only
- (d) symmetric with respect to the x-axis and y-axis
- (e) not symmetric with respect to the x-axis, y-axis and origin

- 7. If the line $ax + by + \frac{5}{2} = 0$ with the *y*-intercept $-\frac{5}{6}$ is parallel to the line 2x + 3y = 16, then a + b =
 - (a) 5 ______(correct) (b) -5(c) -10(d) -8(c) -10
 - (e) 10

8. If $x = \frac{1}{2}$ is one of the solutions of the quadratic equation $2x^2 + x + k = 0$, then the other solution is

MASTER

- 9. A farmer has a rectangular garden plot surrounded by $30\ m$ of fence. If the area of the garden is $36\ m^2$, then the **dimensions** of the garden are
 - (a) 3 *m* and 12 *m* _____(correct)
 - (b) 4 m and 11 m
 - (c) 4 m and 9 m
 - (d) 5 m and 10 m
 - (e) 6 m and 6 m

10. For $i = \sqrt{-1}$, the expression

$$\left(\sqrt[3]{-8}\right)\left(\sqrt{-9}\right) - \frac{1+i^7}{1+i} =$$

(a)
$$-5i$$
 ______(correct)
(b) $-6 + i$
(c) $-6 - i$
(d) $-7i$

(e) 6+i

231, MATH 001, SECOND MAJOR

Page 6 of 10

11. The solution set of the equation $\sqrt{3x+1} - \sqrt{x+1} = 2$ consists of

- (a) only one positive integer _____(correct)
- (b) only one negative integer
- (c) two positive integers
- (d) two negative integers
- (e) two nonnegative integers

12. The solution set of the equation $\frac{x-1}{x^2-1} = \frac{1}{2}$ consists of

- (a) no real numbers _____(correct)
- (b) only one positive integer
- (c) only one negative integer
- (d) one positive and one negative integers
- (e) two negative integers

MASTER

13. The solution set of the inequality $x + \frac{1}{x} \ge 0$ is

(e) $[-1,0) \cup [1,\infty)$

14. The solution set of the inequality $x^2 - 2x + 1 \le 0$ is

MASTER

15. The solution set of the inequality $4-2\left|x-\frac{1}{2}\right|<5$ is

16. The **number** of the solution(s) for the equation $|x+3|^2 + |x+3| = 0$ is equal to

17. If
$$f(x) = \begin{cases} 1 - \lfloor 2x \rfloor, & \text{if } x < -3; \\ 16x^2 - 1, & \text{if } x \ge -3, \end{cases}$$

where $\lfloor x \rfloor$ is the greatest integer function of x, then $f(-\pi) =$

(a) 8 ______(correct)
(b) 7
(c)
$$16\pi^2 - 1$$

(d) -7
(e) -6

18. Which one of the following does NOT define y as a function of x?

(a)
$$4x = \sqrt{y^2}$$
 (correct)
(b) $xy = 5$
(c) $x^2 - 1 = \sqrt{y}$
(d) $|x| - y = 3$
(e) $\{(2, 5), (3, 3), (4, 4), (5, 2)\}$

MASTER

19. The graph of the function $f(x) = \begin{cases} |x|, & \text{if } x \leq 1; \\ 5, & \text{if } x > 1, \end{cases}$ is **increasing** on the interval

(a)
$$(0,1)$$
 ______(correct)
(b) $(1,\infty)$
(c) $(-\infty,0)$
(d) $(-\infty,\infty)$

(e) $(0,\infty)$

20. If
$$f(x) = \frac{1}{x+1}$$
, then the difference quotient $\frac{f(1) - f(h+1)}{h} =$

(a)
$$\frac{1}{2(h+2)}$$
 (correct)
(b)
$$\frac{-1}{2(h+2)}$$

(c)
$$\frac{h}{h+2}$$

(d)
$$\frac{-1}{h+2}$$

(e)
$$\frac{h}{2h+2}$$

King Fahd University of Petroleum and Minerals Prep-Math Program

CODE001

CODE001

MATH 001 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

Name		
ID	Sec	

Check that this exam has $\underline{20}$ questions

Important Instructions:

- 1. All types of calculators, smart watches, mobile phones, or any other electronic devices are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If $x^2 + y^2 + 2x + y - 1 = k$ represents an **equation of a circle**, then the value(s) of k is (are)

(a)
$$\left(-\frac{9}{4},\infty\right)$$

(b) $(-\infty,-4)$
(c) $-\frac{9}{4}$
(d) $\left(-\infty,-\frac{9}{4}\right)$
(e) $-\frac{11}{4}$

2. If
$$f(x) = \begin{cases} 1 - \lfloor 2x \rfloor$$
, if $x < -3$;
 $16x^2 - 1$, if $x \ge -3$,
where $\lfloor x \rfloor$ is the greatest integer function of x , then $f(-\pi) =$

(a) $16\pi^2 - 1$ (b) -7(c) 8(d) -6(e) 7

CODE001

3. If $x = -\frac{5}{9}$ is the solution of the equation $\frac{2}{x} - 4 = 5 + \frac{k}{x}$, then k =

- (a) -3
- (b) 2
- (c) -2
- (d) 7
- (e) 8

- 4. The solution set of the equation $\sqrt{3x+1} \sqrt{x+1} = 2$ consists of
 - (a) only one negative integer
 - (b) only one positive integer
 - (c) two nonnegative integers
 - (d) two positive integers
 - (e) two negative integers

231, MATH 001, SECOND MAJOR

- 5. The solution set of the equation $\frac{x-1}{x^2-1} = \frac{1}{2}$ consists of
 - (a) only one positive integer
 - (b) only one negative integer
 - (c) one positive and one negative integers
 - (d) no real numbers
 - (e) two negative integers

- 6. The solution set of the inequality $4-2|x-\frac{1}{2}| < 5$ is
 - (a) $(-\infty, \frac{1}{2})$ (b) $(-\infty, \infty)$ (c) [0, 1](d) \emptyset (e) $(-\frac{1}{2}, \infty)$

- 7. The solution set of the inequality $x + \frac{1}{x} \ge 0$ is
 - (a) $(-\infty, -1] \cup (0, 1]$ (b) $[-1, 0) \cup [1, \infty)$ (c) $(0, \infty)$ (d) $[0, \infty)$
 - (e) [-1,1]

- 8. A farmer has a rectangular garden plot surrounded by $30\ m$ of fence. If the area of the garden is $36\ m^2$, then the **dimensions** of the garden are
 - (a) $4 \ m$ and $11 \ m$
 - (b) 4 m and 9 m
 - (c) 3 m and 12 m
 - (d) 5 m and 10 m
 - (e) 6 m and 6 m

- 9. Let M(x, y) be the **midpoint** of the line segment that joins the points (3, 4) and (k, 6). If x + y = 1, then the value of k is equal to
 - (a) -4
 - (b) 5
 - (c) -6
 - (d) 8
 - (e) −11

- 10. If $x=\frac{1}{2}\,$ is one of the solutions of the quadratic equation $2x^2+x+k=0$, then the other solution is
 - (a) 2
 - (b) 0
 - (c) 1
 - (d) -1
 - (e) -2

CODE001

11. The graph of the equation $|y| = (x - y)^2$ is

- (a) not symmetric with respect to the x-axis, y-axis and origin
- (b) symmetric with respect to the x-axis only
- (c) symmetric with respect to the x-axis and y-axis
- (d) symmetric with respect to the origin only
- (e) symmetric with respect to the y-axis only

12. The **sum** of all the real solution(s) of the equation $(x+1)^{\frac{2}{3}} + 3 = 12$ is

- (a) 27
- (b) -4
- (c) -2
- (d) 3
- (e) −9

13. The **number** of the solution(s) for the equation $|x+3|^2 + |x+3| = 0$ is equal to

- (a) 1
- (b) 4
- (c) 2
- (d) 0
- (e) 3

14. If the line $ax + by + \frac{5}{2} = 0$ with the *y*-intercept $-\frac{5}{6}$ is parallel to the line 2x + 3y = 16, then a + b =

- (a) -10
- (b) 10
- (c) 5
- (d) -8
- (e) -5

CODE001

15. If
$$f(x) = \frac{1}{x+1}$$
, then the difference quotient $\frac{f(1) - f(h+1)}{h} =$

(a)
$$\frac{1}{2(h+2)}$$

(b) $\frac{h}{h+2}$
(c) $\frac{-1}{2(h+2)}$
(d) $\frac{h}{2h+2}$
(e) $\frac{-1}{h+2}$

16. If a < b , then the ${\bf distance}$ between the points $\ (1,a) \ \mbox{and} \ \ (1,2b-a) \ \mbox{is equal to}$

- (a) 2(a+b)
- (b) 2*b*
- (c) 4(a-b)
- (d) 2(b-a)
- (e) 2(a-b)

17. For $i = \sqrt{-1}$, the expression

$$(\sqrt[3]{-8})(\sqrt{-9}) - \frac{1+i^7}{1+i} =$$

(a)
$$-6 + i$$

(b) $6 + i$
(c) $-7i$
(d) $-5i$
(e) $-6 - i$

18. The solution set of the inequality $x^2 - 2x + 1 \le 0$ is

(a)
$$(-\infty, 1)$$

(b) $\{1\}$
(c) $(-\infty, 1) \cup (1, \infty)$
(d) $(-\infty, \infty)$
(e) \emptyset

Page 10 of 10

19. Which one of the following does NOT define y as a function of x?

(a)
$$4x = \sqrt{y^2}$$

(b) $|x| - y = 3$
(c) $x^2 - 1 = \sqrt{y}$
(d) $\{(2,5), (3,3), (4,4), (5,2)\}$
(e) $xy = 5$

20. The graph of the function $f(x) = \begin{cases} |x|, & \text{if } x \leq 1; \\ 5, & \text{if } x > 1, \end{cases}$ is **increasing** on the interval

- (a) $(-\infty, 0)$
- (b) (0,1)
- (c) $(0,\infty)$
- (d) $(1,\infty)$
- (e) $(-\infty,\infty)$

King Fahd University of Petroleum and Minerals Prep-Math Program

CODE002

CODE002

MATH 001 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

Name		
ID	Sec	

Check that this exam has 20 questions

Important Instructions:

- 1. All types of calculators, smart watches, mobile phones, or any other electronic devices are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. If the line $ax + by + \frac{5}{2} = 0$ with the *y*-intercept $-\frac{5}{6}$ is parallel to the line 2x + 3y = 16, then a + b =
 - (a) 10
 - (b) -5
 - (c) -10
 - (d) -8
 - (e) 5

2. If a < b, then the **distance** between the points (1, a) and (1, 2b - a) is equal to

- (a) 2(a+b)
- (b) 2(a-b)
- (c) 2b
- (d) 4(a-b)
- (e) 2(b-a)

CODE002

3. If $x = -\frac{5}{9}$ is the solution of the equation $\frac{2}{x} - 4 = 5 + \frac{k}{x}$, then k =

- (a) -2
- (b) 7
- (c) 2
- (d) 8
- (e) -3

4. The solution set of the inequality $x + \frac{1}{x} \ge 0$ is

- (a) $[-1,0) \cup [1,\infty)$
- (b) $[0, \infty)$
- (c) [-1, 1]
- (d) $(0,\infty)$
- (e) $(-\infty, -1] \cup (0, 1]$

CODE002

5. If
$$f(x) = \frac{1}{x+1}$$
, then the difference quotient $\frac{f(1) - f(h+1)}{h} =$

(a)
$$\frac{-1}{2(h+2)}$$

(b) $\frac{h}{h+2}$
(c) $\frac{1}{2(h+2)}$
(d) $\frac{-1}{h+2}$
(e) $\frac{h}{2h+2}$

6. A farmer has a rectangular garden plot surrounded by $30\ m$ of fence. If the area of the garden is $36\ m^2$, then the **dimensions** of the garden are

- (a) 4 m and 9 m
- (b) 3 m and 12 m
- (c) 5 m and 10 m
- (d) 4 m and 11 m
- (e) 6 m and 6 m

231, MATH 001, SECOND MAJOR

- 7. The solution set of the equation $\sqrt{3x+1} \sqrt{x+1} = 2$ consists of
 - (a) only one negative integer
 - (b) only one positive integer
 - (c) two negative integers
 - (d) two positive integers
 - (e) two nonnegative integers

- 8. Let M(x, y) be the **midpoint** of the line segment that joins the points (3, 4) and (k, 6). If x + y = 1, then the value of k is equal to
 - (a) 5
 - (b) -11
 - (c) 8
 - (d) -6
 - (e) -4

9. If $x^2 + y^2 + 2x + y - 1 = k$ represents an **equation of a circle**, then the value(s) of k is (are)

(a)
$$-\frac{11}{4}$$

(b) $\left(-\infty, -\frac{9}{4}\right)$
(c) $\left(-\infty, -4\right)$
(d) $\left(-\frac{9}{4}, \infty\right)$
(e) $-\frac{9}{4}$

10. The graph of the function $f(x) = \begin{cases} |x|, & \text{if } x \leq 1; \\ & & \text{is increasing on the interval} \\ 5, & \text{if } x > 1, \end{cases}$

- (a) $(0,\infty)$
- (b) $(-\infty,\infty)$
- (c) $(1,\infty)$
- (d) (0,1)
- (e) $(-\infty, 0)$

11. The solution set of the inequality $x^2 - 2x + 1 \le 0$ is

(a)
$$\emptyset$$

(b) $(-\infty, 1)$
(c) $\{1\}$
(d) $(-\infty, 1) \cup (1, \infty)$
(e) $(-\infty, \infty)$

12. The solution set of the inequality $4-2\left|x-\frac{1}{2}\right|<5$ is

(a)
$$(-\infty, \infty)$$

(b) \emptyset
(c) $(-\infty, \frac{1}{2})$
(d) $[0, 1]$
(e) $(-\frac{1}{2}, \infty)$

13. The **sum** of all the real solution(s) of the equation $(x+1)^{\frac{2}{3}} + 3 = 12$ is

- (a) 3
- (b) -4
- (c) -2
- (d) 27
- (e) -9

- 14. If $x=\frac{1}{2}\,$ is one of the solutions of the quadratic equation $2x^2+x+k=0$, then the other solution is
 - (a) −1
 - (b) 2
 - (c) 0
 - (d) 1
 - (e) -2

15. For $i = \sqrt{-1}$, the expression

$$(\sqrt[3]{-8})(\sqrt{-9}) - \frac{1+i^7}{1+i} =$$

(a)
$$-5i$$

(b) $6+i$
(c) $-6-i$
(d) $-6+i$
(e) $-7i$

16. The **number** of the solution(s) for the equation $|x+3|^2 + |x+3| = 0$ is equal to

- (a) 1
- (b) 3
- (c) 0
- (d) 4
- (e) 2

17. If
$$f(x) = \begin{cases} 1 - \lfloor 2x \rfloor, & \text{if } x < -3; \\ \\ 16x^2 - 1, & \text{if } x \ge -3, \end{cases}$$

where $\lfloor x \rfloor$ is the greatest integer function of x, then $f(-\pi) =$

(a)
$$-7$$

(b) 7
(c) 8
(d) -6
(e) $16\pi^2 - 1$

18. The graph of the equation $|y| = (x - y)^2$ is

- (a) symmetric with respect to the origin only
- (b) symmetric with respect to the y-axis only
- (c) symmetric with respect to the x-axis only
- (d) symmetric with respect to the x-axis and y-axis
- (e) not symmetric with respect to the x-axis, y-axis and origin

231, MATH 001, SECOND MAJOR

19. The solution set of the equation $\frac{x-1}{x^2-1} = \frac{1}{2}$ consists of

- (a) two negative integers
- (b) only one positive integer
- (c) only one negative integer
- (d) no real numbers
- (e) one positive and one negative integers

20. Which one of the following does NOT define y as a function of x?

(a)
$$|x| - y = 3$$

(b) $x^2 - 1 = \sqrt{y}$
(c) $xy = 5$
(d) $\{(2,5), (3,3), (4,4), (5,2)\}$
(e) $4x = \sqrt{y^2}$

King Fahd University of Petroleum and Minerals Prep-Math Program

CODE003

CODE003

MATH 001 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

Name		
ID	Sec	

Check that this exam has 20 questions

Important Instructions:

- 1. All types of calculators, smart watches, mobile phones, or any other electronic devices are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

231, MATH 001, SECOND MAJOR

CODE003

1. If
$$f(x) = \frac{1}{x+1}$$
, then the difference quotient $\frac{f(1) - f(h+1)}{h} =$

(a)
$$\frac{-1}{2(h+2)}$$

(b) $\frac{h}{h+2}$
(c) $\frac{h}{2h+2}$
(d) $\frac{-1}{h+2}$
(e) $\frac{1}{2(h+2)}$

2. The **sum** of all the real solution(s) of the equation $(x+1)^{\frac{2}{3}} + 3 = 12$ is

- (a) 3
- (b) -4
- (c) -9
- (d) -2
- (e) 27

- 3. A farmer has a rectangular garden plot surrounded by 30 m of fence. If the area of the garden is $36 m^2$, then the **dimensions** of the garden are
 - (a) 3 m and 12 m
 - (b) 6 m and 6 m
 - (c) 4 m and 11 m
 - (d) 4 m and 9 m
 - (e) 5 m and 10 m

4. The solution set of the equation $\frac{x-1}{x^2-1} = \frac{1}{2}$ consists of

- (a) only one positive integer
- (b) one positive and one negative integers
- (c) two negative integers
- (d) no real numbers
- (e) only one negative integer

- 5. If $x = \frac{1}{2}$ is one of the solutions of the quadratic equation $2x^2 + x + k = 0$, then the other solution is
 - (a) -1
 - (b) 2
 - (c) -2
 - (d) 1
 - (e) 0

6. The graph of the function $f(x) = \begin{cases} |x|, & \text{if } x \leq 1; \\ 5, & \text{if } x > 1, \end{cases}$ is **increasing** on the interval

- (a) $(-\infty,\infty)$
- (b) $(0,\infty)$
- (c) (0,1)
- (d) $(-\infty, 0)$
- (e) $(1,\infty)$

CODE003

7. The graph of the equation $|y| = (x - y)^2$ is

- (a) symmetric with respect to the y-axis only
- (b) symmetric with respect to the x-axis and y-axis
- (c) not symmetric with respect to the x-axis, y-axis and origin
- (d) symmetric with respect to the x-axis only
- (e) symmetric with respect to the origin only

8. If
$$f(x) = \begin{cases} 1 - \lfloor 2x \rfloor, & \text{if } x < -3; \\ 16x^2 - 1, & \text{if } x \ge -3, \end{cases}$$

where $\lfloor x \rfloor$ is the greatest integer function of x , then $f(-\pi) = 1$

(a)
$$-6$$

(b) -7
(c) 7
(d) 8
(e) $16\pi^2 - 1$

- 9. If the line $ax + by + \frac{5}{2} = 0$ with the *y*-intercept $-\frac{5}{6}$ is parallel to the line 2x + 3y = 16, then a + b =
 - (a) -10
 - (b) 5
 - (c) -5
 - (d) 10
 - (e) -8

10. Which one of the following does NOT define y as a function of x?

(a)
$$|x| - y = 3$$

(b) $x^2 - 1 = \sqrt{y}$
(c) $\{(2, 5), (3, 3), (4, 4), (5, 2)\}$
(d) $xy = 5$
(e) $4x = \sqrt{y^2}$

- 11. Let M(x, y) be the **midpoint** of the line segment that joins the points (3, 4) and (k, 6). If x + y = 1, then the value of k is equal to
 - (a) -6
 - (b) 8
 - (c) −4
 - (d) -11
 - (e) 5

- 12. The solution set of the equation $\sqrt{3x+1} \sqrt{x+1} = 2$ consists of
 - (a) two nonnegative integers
 - (b) only one negative integer
 - (c) only one positive integer
 - (d) two positive integers
 - (e) two negative integers

CODE003

13. If $x = -\frac{5}{9}$ is the solution of the equation $\frac{2}{x} - 4 = 5 + \frac{k}{x}$, then k =

- (a) -2
- (b) 7
- (c) 2
- (d) -3
- (e) 8

14. The solution set of the inequality $x + \frac{1}{x} \ge 0$ is

- (a) $[-1, 0) \cup [1, \infty)$ (b) $(0, \infty)$
- (c) $[0,\infty)$
- (d) [-1,1]
- (e) $(-\infty, -1] \cup (0, 1]$

15. For $i = \sqrt{-1}$, the expression

$$(\sqrt[3]{-8})(\sqrt{-9}) - \frac{1+i^7}{1+i} =$$

(a) 6+i(b) -6+i(c) -5i(d) -7i(e) -6-i

16. If $x^2 + y^2 + 2x + y - 1 = k$ represents an **equation of a circle**, then the value(s) of k is (are)

(a)
$$\left(-\infty, -\frac{9}{4}\right)$$

(b) $-\frac{11}{4}$
(c) $\left(-\frac{9}{4}, \infty\right)$
(d) $(-\infty, -4)$
(e) $-\frac{9}{4}$

17. If a < b , then the ${\bf distance}$ between the points $\ (1,a) \ \mbox{ and } \ (1,2b-a) \ \mbox{ is equal to}$

- (a) 2(b-a)(b) 2(a+b)(c) 4(a-b)
- (d) 2(a-b)
- (e) 2*b*

18. The **number** of the solution(s) for the equation $|x+3|^2 + |x+3| = 0$ is equal to

- (a) 1
- (b) 4
- (c) 2
- (d) 0
- (e) 3

- 19. The solution set of the inequality $x^2 2x + 1 \le 0$ is
 - (a) \emptyset (b) $(-\infty, \infty)$ (c) $(-\infty, 1) \cup (1, \infty)$ (d) $\{1\}$ (e) $(-\infty, 1)$

20. The solution set of the inequality $4-2\left|x-\frac{1}{2}\right|<5$ is

(a) \emptyset (b) [0,1](c) $\left(-\frac{1}{2},\infty\right)$ (d) $\left(-\infty,\infty\right)$ (e) $\left(-\infty,\frac{1}{2}\right)$

King Fahd University of Petroleum and Minerals Prep-Math Program

CODE004

CODE004

MATH 001 SECOND MAJOR TERM 231 11 NOVEMBER 2023 Net Time Allowed: 100 minutes

Name		
ID	Sec	

Check that this exam has 20 questions

Important Instructions:

- 1. All types of calculators, smart watches, mobile phones, or any other electronic devices are NOT allowed during the examination.
- 2. Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. Let M(x, y) be the **midpoint** of the line segment that joins the points (3, 4) and (k, 6). If x + y = 1, then the value of k is equal to
 - (a) -11
 - (b) 8
 - (c) 5
 - (d) -4
 - (e) -6

2. If
$$f(x) = \begin{cases} 1 - \lfloor 2x \rfloor, & \text{if } x < -3; \\ 16x^2 - 1, & \text{if } x \ge -3, \end{cases}$$

where $\lfloor x \rfloor$ is the greatest integer function of x, then $f(-\pi) =$

(a) 8
(b)
$$16\pi^2 - 1$$

(c) -6
(d) 7
(e) -7

CODE004

- 3. The solution set of the inequality $x + \frac{1}{x} \ge 0$ is
 - (a) [-1, 1](b) $(0, \infty)$ (c) $[-1, 0) \cup [1, \infty)$ (d) $(-\infty, -1] \cup (0, 1]$ (e) $[0, \infty)$

- 4. The graph of the equation $|y| = (x y)^2$ is
 - (a) not symmetric with respect to the x-axis, y-axis and origin
 - (b) symmetric with respect to the origin only
 - (c) symmetric with respect to the y-axis only
 - (d) symmetric with respect to the x-axis and y-axis
 - (e) symmetric with respect to the x-axis only

- 5. The sum of all the real solution(s) of the equation $(x+1)^{\frac{2}{3}} + 3 = 12$ is
 - (a) 27
 - (b) -4
 - (c) 3
 - (d) -9
 - (e) -2

- 6. If the line $ax + by + \frac{5}{2} = 0$ with the *y*-intercept $-\frac{5}{6}$ is parallel to the line 2x + 3y = 16, then a + b =
 - (a) 5
 - (b) 10
 - (c) -10
 - (d) -5
 - (e) -8

7. Which one of the following does NOT define y as a function of x?

(a)
$$x^2 - 1 = \sqrt{y}$$

(b) $xy = 5$
(c) $\{(2,5), (3,3), (4,4), (5,2)\}$
(d) $4x = \sqrt{y^2}$
(e) $|x| - y = 3$

- 8. The solution set of the equation $\sqrt{3x+1} \sqrt{x+1} = 2$ consists of
 - (a) two positive integers
 - (b) only one positive integer
 - (c) two nonnegative integers
 - (d) two negative integers
 - (e) only one negative integer

- 9. The solution set of the inequality $x^2 2x + 1 \le 0$ is
 - (a) $(-\infty, 1)$ (b) \emptyset (c) $(-\infty, 1) \cup (1, \infty)$ (d) $(-\infty, \infty)$ (e) $\{1\}$

10. The solution set of the equation $\frac{x-1}{x^2-1} = \frac{1}{2}$ consists of

- (a) only one negative integer
- (b) two negative integers
- (c) no real numbers
- (d) one positive and one negative integers
- (e) only one positive integer

CODE004

11. If
$$f(x) = \frac{1}{x+1}$$
, then the difference quotient $\frac{f(1) - f(h+1)}{h} =$

(a)
$$\frac{h}{2h+2}$$

(b) $\frac{-1}{2(h+2)}$
(c) $\frac{-1}{h+2}$
(d) $\frac{1}{2(h+2)}$
(e) $\frac{h}{h+2}$

12. A farmer has a rectangular garden plot surrounded by $30\ m$ of fence. If the area of the garden is $36\ m^2$, then the **dimensions** of the garden are

- (a) 5 m and 10 m
- (b) 4 m and 11 m
- (c) 4 m and 9 m
- (d) 3 m and 12 m
- (e) 6 m and 6 m

CODE004

- 13. The solution set of the inequality $4-2\left|x-\frac{1}{2}\right|<5$ is
 - (a) \emptyset
 - (b) [0,1]
 - (c) $\left(-\infty,\frac{1}{2}\right)$
 - (d) $(-\infty,\infty)$
 - (e) $\left(-\frac{1}{2},\infty\right)$

14. For $i = \sqrt{-1}$, the expression

$$(\sqrt[3]{-8})(\sqrt{-9}) - \frac{1+i^7}{1+i} =$$

(a) -5i(b) -6 - i(c) -7i(d) -6 + i(e) 6 + i 15. The **number** of the solution(s) for the equation $|x+3|^2 + |x+3| = 0$ is equal to

- (a) 2
- (b) 4
- (c) 0
- (d) 1
- (e) 3

- 16. If $x = \frac{1}{2}$ is one of the solutions of the quadratic equation $2x^2 + x + k = 0$, then the other solution is
 - (a) 2
 - (b) 1
 - (c) -1
 - (d) -2
 - (e) 0

17. The graph of the function $f(x) = \begin{cases} |x|, & \text{if } x \leq 1; \\ 5, & \text{if } x > 1, \end{cases}$ is **increasing** on the interval

- (a) $(0,\infty)$
- (b) $(1,\infty)$
- (c) (0,1)
- (d) $(-\infty,\infty)$
- (e) $(-\infty, 0)$

18. If $x = -\frac{5}{9}$ is the solution of the equation $\frac{2}{x} - 4 = 5 + \frac{k}{x}$, then k =

- (a) 8
 (b) −2
- (0) 2
- (c) 2
- (d) -3
- (e) 7

19. If a < b, then the **distance** between the points (1, a) and (1, 2b - a) is equal to

- (a) 2(a-b)
- (b) 2b
- (c) 4(a-b)
- (d) 2(a+b)
- (e) 2(b-a)

20. If $x^2 + y^2 + 2x + y - 1 = k$ represents an **equation of a circle**, then the value(s) of k is (are)

(a)
$$-\frac{9}{4}$$

(b) $\left(-\infty, -\frac{9}{4}\right)$
(c) $\left(-\infty, -4\right)$
(d) $-\frac{11}{4}$
(e) $\left(-\frac{9}{4}, \infty\right)$

MATH 001, 231, EXAM 2 $\,$

Answer KEY

Q	MASTER	CODE01	CODE02	CODE03	CODE04
1	А	A 5	E ₇	Е 20	A 4
2	A	С 17	Ез	D 1	A 17
3	A	D 2	В 2	А 9	В 13
4	A	В 11	D 13	D 12	В 6
5	A	D 12	C 20	A ₈	E 1
6	A	В 15	В 9	С 19	A ₇
7	A	С 13	В 11	Е 6	D 18
8	A	С 9	B 4	D 17	В 11
9	A	E ₄	D 5	B ₇	Е 14
10	A	D 8	D 19	Е 18	С 12
11	A	D 6	$\mathrm{C}_{_{14}}$	D 4	D 20
12	A	С 1	A 15	С 11	D 9
13	A	A 16	С 1	В 2	D 15
14	A	С 7	A ₈	В 13	A 10
15	A	A 20	A 10	С 10	D 16
16	A	D 3	A 16	С 5	С в
17	A	D 10	С 17	Аз	С 19
18	A	В 14	A 6	A 16	E 2
19	A	A 18	D 12	D 14	E ₃
20	A	В 19	Е 18	D 15	E 5

Answer Counts

V	A	В	С	D	Е
1	4	4	5	6	1
2	5	4	4	4	3
3	4	3	4	6	3
4	4	3	3	5	5